Reverse Knowledge Distillation with Two Teachers for Industrial Defect Detection

过度拟合 计算机科学 人工智能 机器学习 蒸馏 模式识别(心理学) 特征(语言学) 图像(数学) 人工神经网络 数据挖掘 语言学 哲学 有机化学 化学
作者
Mingjing Pei,Ningzhong Liu,Pan Gao,Han Sun
出处
期刊:Applied sciences [Multidisciplinary Digital Publishing Institute]
卷期号:13 (6): 3838-3838 被引量:9
标识
DOI:10.3390/app13063838
摘要

Industrial defect detection plays an important role in smart manufacturing and is widely used in various scenarios such as smart inspection and product quality control. Currently, although utilizing a framework for knowledge distillation to identify industrial defects has achieved great progress, it is still a significant challenge task to extract better image features and prevent overfitting for student networks. In this study, a reverse knowledge distillation framework with two teachers is designed. First, for the teacher network, two teachers with different architectures are used to extract the diverse features of the images from multiple models. Second, considering the different contributions of channels and different teacher networks, the attention mechanism and iterative attention feature fusion idea are introduced. Finally, to prevent overfitting, the student network is designed with a network architecture that is inconsistent with the teacher network. Extensive experiments were conducted on Mvtec and BTAD datasets, which are industrial defect detection datasets. On the Mvtec dataset, the average accuracy values of image-level and pixel-level ROC achieved 99.43% and 97.87%, respectively. On the BTAD dataset, the average accuracy values of image-level and pixel-level ROC reached 94% and 98%, respectively. The performance on both datasets is significantly improved, demonstrating the effectiveness of our method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小二郎应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
柠觉呢应助科研通管家采纳,获得10
刚刚
乔垣结衣应助科研通管家采纳,获得10
1秒前
乔垣结衣应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
科研通AI2S应助科研通管家采纳,获得10
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
深情安青应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得10
1秒前
所所应助科研通管家采纳,获得10
1秒前
完美世界应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
慕青应助科研通管家采纳,获得10
2秒前
Hello应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
小蘑菇应助科研通管家采纳,获得10
2秒前
2秒前
脑洞疼应助科研通管家采纳,获得10
2秒前
Jasper应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
Akim应助科研通管家采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
3秒前
思源应助科研通管家采纳,获得10
3秒前
大个应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
上官若男应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得20
3秒前
大个应助科研通管家采纳,获得10
3秒前
完美世界应助科研通管家采纳,获得10
3秒前
所所应助科研通管家采纳,获得10
3秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778270
求助须知:如何正确求助?哪些是违规求助? 3323870
关于积分的说明 10216436
捐赠科研通 3039122
什么是DOI,文献DOI怎么找? 1667788
邀请新用户注册赠送积分活动 798409
科研通“疑难数据库(出版商)”最低求助积分说明 758366