The Virtual Family—development of surface-based anatomical models of two adults and two children for dosimetric simulations

分割 计算机科学 体素 灵活性(工程) 人工智能 磁共振成像 模式识别(心理学) 计算机视觉 医学 数学 统计 放射科
作者
Andreas Christ,Wolfgang Kainz,Eckhart G. Hahn,Katharina Honegger,Marcel Zefferer,Esra Neufeld,Wolfgang Rascher,Rolf Janka,W Bautz,Ji Chen,Berthold Kiefer,Peter Schmitt,Hans-Peter Hollenbach,Jianxiang Shen,Michael Oberle,Dominik Szczerba,Anthony Kam,Joshua Guag,Niels Kuster
出处
期刊:Physics in Medicine and Biology [IOP Publishing]
卷期号:55 (2): N23-N38 被引量:1357
标识
DOI:10.1088/0031-9155/55/2/n01
摘要

The objective of this study was to develop anatomically correct whole body human models of an adult male (34 years old), an adult female (26 years old) and two children (an 11-year-old girl and a six-year-old boy) for the optimized evaluation of electromagnetic exposure. These four models are referred to as the Virtual Family. They are based on high resolution magnetic resonance (MR) images of healthy volunteers. More than 80 different tissue types were distinguished during the segmentation. To improve the accuracy and the effectiveness of the segmentation, a novel semi-automated tool was used to analyze and segment the data. All tissues and organs were reconstructed as three-dimensional (3D) unstructured triangulated surface objects, yielding high precision images of individual features of the body. This greatly enhances the meshing flexibility and the accuracy with respect to thin tissue layers and small organs in comparison with the traditional voxel-based representation of anatomical models. Conformal computational techniques were also applied. The techniques and tools developed in this study can be used to more effectively develop future models and further improve the accuracy of the models for various applications. For research purposes, the four models are provided for free to the scientific community.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
plusweng完成签到 ,获得积分10
1秒前
2秒前
5秒前
10秒前
Ryy发布了新的文献求助10
10秒前
苏洛发布了新的文献求助10
10秒前
杨乃彬完成签到,获得积分10
16秒前
光亮千易完成签到,获得积分10
17秒前
木木三发布了新的文献求助10
17秒前
yu完成签到 ,获得积分10
19秒前
21秒前
ding应助无心的土豆采纳,获得10
22秒前
26秒前
27秒前
28秒前
Amo应助欢喜的天空采纳,获得10
28秒前
30秒前
科研通AI5应助kingmantj采纳,获得30
30秒前
31秒前
滕皓轩发布了新的文献求助10
31秒前
咖啡先生发布了新的文献求助10
31秒前
31秒前
夜盏丿完成签到,获得积分10
32秒前
风中的安珊完成签到,获得积分10
34秒前
35秒前
35秒前
Lucas应助前往宇宙尽头采纳,获得10
37秒前
SciGPT应助木头采纳,获得10
40秒前
40秒前
余木木完成签到 ,获得积分10
40秒前
骆驼林子发布了新的文献求助10
42秒前
乐乐应助做科研的小丸子采纳,获得10
43秒前
44秒前
墨子完成签到 ,获得积分10
44秒前
kingmantj发布了新的文献求助30
45秒前
前往宇宙尽头完成签到,获得积分10
45秒前
滕皓轩发布了新的文献求助10
46秒前
49秒前
Owen应助烂漫的烙采纳,获得10
49秒前
小蘑菇应助黑妖采纳,获得10
50秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776783
求助须知:如何正确求助?哪些是违规求助? 3322227
关于积分的说明 10209307
捐赠科研通 3037454
什么是DOI,文献DOI怎么找? 1666696
邀请新用户注册赠送积分活动 797627
科研通“疑难数据库(出版商)”最低求助积分说明 757976