MRI Measurements of Breast Tumor Volume Predict Response to Neoadjuvant Chemotherapy and Recurrence-Free Survival

医学 化疗 单变量分析 磁共振成像 预测值 多元分析 试验预测值 新辅助治疗 乳腺癌 核医学 放射科 肿瘤科 内科学 癌症
作者
Savannah C. Partridge,Jessica Gibbs,Ying Lü,Laura J. Esserman,Debasish Tripathy,Dulcy Wolverton,Hope S. Rugo,E. Shelley Hwang,Cheryl A. Ewing,Nola M. Hylton
出处
期刊:American Journal of Roentgenology [American Roentgen Ray Society]
卷期号:184 (6): 1774-1781 被引量:251
标识
DOI:10.2214/ajr.184.6.01841774
摘要

The purpose of this study was to assess the value of MRI measurements of breast tumor size for predicting recurrence-free survival (RFS) in patients undergoing neoadjuvant (preoperative) chemotherapy and to compare the predictive value of MRI with that of established prognostic indicators.The study included 62 patients undergoing neoadjuvant chemotherapy. The longest diameter and volume of each tumor were measured on MRI before and after one and four cycles of treatment. Change in diameter on clinical examination, tumor size at pathology, and the number of positive nodes were determined. Each measure of tumor extent was assessed for the ability to predict RFS.Univariate Cox analysis showed initial MRI volume was the strongest predictor of RFS (p = 0.002). Final change in MRI volume (p = 0.015) was more predictive than change in diameter on MRI (p = 0.077) or clinical examination (p = 0.27). Initial diameter on MRI (p = 0.003) and clinical examination (p = 0.033), tumor size at pathology (p = 0.016), and number of positive nodes (p = 0.045) were also significantly predictive of RFS. Early change in MRI volume (p = 0.071) and diameter (p = 0.081) after one chemotherapy cycle showed trends of association with RFS. Multivariate analysis showed initial MRI volume (p = 0.005) and final change in MRI volume (p = 0.003) were significant independent predictors.MRI tumor volume was more predictive of RFS than tumor diameter, suggesting that volumetric changes measured using MRI may provide a more sensitive assessment of treatment efficacy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
狗贼完成签到,获得积分10
刚刚
1秒前
龅牙苏发布了新的文献求助10
1秒前
1秒前
2秒前
bckl888发布了新的文献求助10
2秒前
3秒前
jiacooo发布了新的文献求助10
3秒前
4秒前
飘逸灰狼完成签到,获得积分10
4秒前
Zert完成签到,获得积分10
4秒前
安静晓山完成签到,获得积分10
5秒前
Zero发布了新的文献求助10
5秒前
领导范儿应助初(*^▽^*)心采纳,获得10
6秒前
wwwteng呀发布了新的文献求助10
6秒前
YifanWang应助wcj采纳,获得30
7秒前
7秒前
Jasper应助不攻自破采纳,获得10
8秒前
8秒前
NZH发布了新的文献求助10
9秒前
wanci应助WalkToSky采纳,获得10
9秒前
子訡完成签到 ,获得积分10
11秒前
Zert发布了新的文献求助10
11秒前
李健的小迷弟应助上上谦采纳,获得10
12秒前
xjx完成签到,获得积分10
12秒前
XLC发布了新的文献求助30
13秒前
13秒前
研友_RSRS应助黄橙子采纳,获得10
13秒前
丘比特应助qmhx采纳,获得10
15秒前
天才刚亮完成签到,获得积分10
15秒前
汉堡包应助wwwteng呀采纳,获得10
15秒前
跳跃的小林应助wwwteng呀采纳,获得10
15秒前
亚铁氰化钾应助wwwteng呀采纳,获得10
15秒前
orixero应助wwwteng呀采纳,获得10
16秒前
可爱的函函应助wwwteng呀采纳,获得10
16秒前
赘婿应助wwwteng呀采纳,获得10
16秒前
李健应助wwwteng呀采纳,获得10
16秒前
龅牙苏完成签到,获得积分10
16秒前
16秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Biology of the Indian Stingless Bee: Tetragonula iridipennis Smith 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 740
镇江南郊八公洞林区鸟类生态位研究 500
Thermal Quadrupoles: Solving the Heat Equation through Integral Transforms 500
Corpus Linguistics for Language Learning Research 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4139320
求助须知:如何正确求助?哪些是违规求助? 3676275
关于积分的说明 11620352
捐赠科研通 3370382
什么是DOI,文献DOI怎么找? 1851340
邀请新用户注册赠送积分活动 914489
科研通“疑难数据库(出版商)”最低求助积分说明 829266