主动噪声控制
趋同(经济学)
算法
噪音(视频)
自适应滤波器
理论(学习稳定性)
递归最小平方滤波器
计算机科学
计算复杂性理论
自适应控制
残余物
控制理论(社会学)
算法设计
滤波器(信号处理)
人工智能
控制(管理)
计算机视觉
机器学习
图像(数学)
经济增长
经济
作者
Rajiv M. Reddy,Issa Panahi,Richard W. Briggs
标识
DOI:10.1109/tcst.2010.2042599
摘要
A hybrid adaptive algorithm is developed for an active noise control system that leverages the stability of the filtered-input normalized least mean squares (FxNLMS) adaptive algorithm, with the high convergence speed of the filtered-input recursive least squares (FxRLS) adaptive algorithm. This algorithm is motivated by practical issues in implementing a real-time active noise control system. It leads to fast initial convergence with low, stable steady-state error while being limited by the computational capability of hardware. It gives better convergence speed than either the FxNLMS or FxRLS algorithm individually, lower residual error, and a lower overall computational complexity than the FxRLS algorithm, when appropriate filter lengths are chosen. Experimental results are presented for the implementation of the hybrid algorithm to cancel functional magnetic resonance imaging (fMRI) acoustic noise in an fMRI test-bed.
科研通智能强力驱动
Strongly Powered by AbleSci AI