Bivariate distribution models using copulas for reliability analysis

连接词(语言学) 联合概率分布 边际分布 二元分析 数学 概率分布 统计 随机变量 可靠性(半导体) 高斯分布 标准差 应用数学 多元正态分布 计量经济学 多元统计 功率(物理) 物理 量子力学
作者
Xiaosong Tang,Dianqing Li,Chuangbing Zhou,Limin Zhang
出处
期刊:Proceedings Of The Institution Of Mechanical Engineers, Part O: Journal Of Risk And Reliability [SAGE]
卷期号:227 (5): 499-512 被引量:62
标识
DOI:10.1177/1748006x13481928
摘要

The modeling of joint probability distributions of correlated variables and the evaluation of reliability under incomplete probability information remain a challenge that has not been studied extensively. This article aims to investigate the effect of copulas for modeling dependence structures between variables on reliability under incomplete probability information. First, a copula-based method is proposed to model the joint probability distributions of multiple correlated variables with given marginal distributions and correlation coefficients. Second, a reliability problem is formulated and a direct integration method for calculating probability of failure is presented. Finally, the reliability is investigated to demonstrate the effect of copulas on reliability. The joint probability distribution of multiple variables, with given marginal distributions and correlation coefficients, can be constructed using copulas in a general and flexible way. The probabilities of failure produced by different copulas can differ considerably. Such a difference increases with decreasing probability of failure. The reliability index defined by the mean and standard deviation of a performance function cannot capture the difference in the probabilities of failure produced by different copulas. In addition, the Gaussian copula, often adopted out of expedience without proper validation, produces only one of the various possible solutions of the probability of failure and such a probability of failure may be biased towards the non-conservative side. The tail dependence of copulas has a significant influence on reliability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
卷毛v完成签到,获得积分20
刚刚
优美的迎丝完成签到,获得积分10
刚刚
梨子完成签到,获得积分10
刚刚
今后应助小鱼干采纳,获得10
刚刚
希望天下0贩的0应助mmw采纳,获得10
1秒前
1秒前
孟一完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
香蕉觅云应助晴栀采纳,获得10
3秒前
ppppphealth发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
简单花花发布了新的文献求助10
4秒前
4秒前
现实的井发布了新的文献求助30
5秒前
cuckoo完成签到,获得积分10
5秒前
7秒前
爆米花应助自由的冰蓝采纳,获得10
7秒前
华仔应助niko采纳,获得10
7秒前
FashionBoy应助niko采纳,获得10
8秒前
丘比特应助niko采纳,获得10
8秒前
CodeCraft应助niko采纳,获得30
8秒前
Lucas应助niko采纳,获得10
8秒前
隐形曼青应助niko采纳,获得10
8秒前
JamesPei应助niko采纳,获得10
8秒前
今后应助niko采纳,获得10
8秒前
淡定宛白应助niko采纳,获得10
8秒前
希望天下0贩的0应助niko采纳,获得30
8秒前
8秒前
清爽胖飞发布了新的文献求助10
9秒前
福star高照完成签到,获得积分10
9秒前
9秒前
CC发布了新的文献求助10
10秒前
10秒前
研友_nPbeR8完成签到,获得积分10
10秒前
忘了完成签到,获得积分10
10秒前
打打应助chaoxishu采纳,获得10
10秒前
科研通AI2S应助XuChen采纳,获得10
10秒前
周新哲发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514286
求助须知:如何正确求助?哪些是违规求助? 4608193
关于积分的说明 14508898
捐赠科研通 4544028
什么是DOI,文献DOI怎么找? 2489864
邀请新用户注册赠送积分活动 1471799
关于科研通互助平台的介绍 1443710