亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome

计算生物学 RNA序列 生物 基因组 参考基因组 基因 转录组 DNA微阵列 遗传学 基因组学 基因表达
作者
Bo Li,Colin N. Dewey
出处
期刊:BMC Bioinformatics [BioMed Central]
卷期号:12 (1) 被引量:14076
标识
DOI:10.1186/1471-2105-12-323
摘要

RNA-Seq is revolutionizing the way transcript abundances are measured. A key challenge in transcript quantification from RNA-Seq data is the handling of reads that map to multiple genes or isoforms. This issue is particularly important for quantification with de novo transcriptome assemblies in the absence of sequenced genomes, as it is difficult to determine which transcripts are isoforms of the same gene. A second significant issue is the design of RNA-Seq experiments, in terms of the number of reads, read length, and whether reads come from one or both ends of cDNA fragments.We present RSEM, an user-friendly software package for quantifying gene and isoform abundances from single-end or paired-end RNA-Seq data. RSEM outputs abundance estimates, 95% credibility intervals, and visualization files and can also simulate RNA-Seq data. In contrast to other existing tools, the software does not require a reference genome. Thus, in combination with a de novo transcriptome assembler, RSEM enables accurate transcript quantification for species without sequenced genomes. On simulated and real data sets, RSEM has superior or comparable performance to quantification methods that rely on a reference genome. Taking advantage of RSEM's ability to effectively use ambiguously-mapping reads, we show that accurate gene-level abundance estimates are best obtained with large numbers of short single-end reads. On the other hand, estimates of the relative frequencies of isoforms within single genes may be improved through the use of paired-end reads, depending on the number of possible splice forms for each gene.RSEM is an accurate and user-friendly software tool for quantifying transcript abundances from RNA-Seq data. As it does not rely on the existence of a reference genome, it is particularly useful for quantification with de novo transcriptome assemblies. In addition, RSEM has enabled valuable guidance for cost-efficient design of quantification experiments with RNA-Seq, which is currently relatively expensive.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
共享精神应助科研通管家采纳,获得10
10秒前
超帅乐荷完成签到,获得积分10
43秒前
poki完成签到 ,获得积分10
54秒前
56秒前
zhzssaijj完成签到,获得积分10
57秒前
1分钟前
Noah完成签到 ,获得积分0
1分钟前
eleven完成签到,获得积分10
1分钟前
clearsky应助科研通管家采纳,获得10
2分钟前
bkagyin应助科研通管家采纳,获得10
2分钟前
clearsky应助科研通管家采纳,获得10
2分钟前
精明寒松完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
miaomiao发布了新的文献求助10
2分钟前
2分钟前
思源应助miaomiao采纳,获得10
2分钟前
4分钟前
lingdu发布了新的文献求助10
4分钟前
隐形曼青应助科研通管家采纳,获得10
4分钟前
遍空应助科研通管家采纳,获得20
4分钟前
orixero应助科研通管家采纳,获得10
4分钟前
4分钟前
yshj完成签到 ,获得积分10
4分钟前
ZYP完成签到,获得积分10
4分钟前
爆米花应助lin采纳,获得10
5分钟前
5分钟前
iso发布了新的文献求助10
5分钟前
小蘑菇应助iso采纳,获得10
5分钟前
5分钟前
iso完成签到,获得积分10
5分钟前
lingdu发布了新的文献求助10
5分钟前
科目三应助科研通管家采纳,获得10
6分钟前
科研通AI5应助科研通管家采纳,获得10
6分钟前
搜集达人应助lingdu采纳,获得10
6分钟前
6分钟前
lingdu发布了新的文献求助10
6分钟前
玉米完成签到,获得积分10
7分钟前
可爱的函函应助玉米采纳,获得10
7分钟前
lingdu发布了新的文献求助10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Parenchymal volume and functional recovery after clamped partial nephrectomy: potential discrepancies 300
Optimization and Learning via Stochastic Gradient Search 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4682323
求助须知:如何正确求助?哪些是违规求助? 4057809
关于积分的说明 12545519
捐赠科研通 3753261
什么是DOI,文献DOI怎么找? 2072912
邀请新用户注册赠送积分活动 1101909
科研通“疑难数据库(出版商)”最低求助积分说明 981211