促炎细胞因子
信号转导
先天免疫系统
细胞生物学
生物
免疫系统
遗传学
免疫学
炎症
作者
Dympna J. Connolly,Luke O'neill,Anne F. McGettrick
标识
DOI:10.1074/jbc.m112.403899
摘要
The proinflammatory danger signal IL-33, which is released from damaged or dying cells, achieves its effects via the IL-1R family member ST2L. The detection of IL-33 by ST2L initiates downstream signaling pathways that result in the activation of MAPKs and NF-κB. Here, we show that TMED1 associates with ST2L. Using a series of mutation and deletion constructs, we demonstrate that this interaction is mediated by the GOLD domain of TMED1 and the TIR domain of ST2L. Our findings also demonstrate that TMED1 is required for optimal IL-33-induced IL-8 and IL-6 production. This discovery provides additional support to the concept that the TMED family members are important players in innate immune signaling. The proinflammatory danger signal IL-33, which is released from damaged or dying cells, achieves its effects via the IL-1R family member ST2L. The detection of IL-33 by ST2L initiates downstream signaling pathways that result in the activation of MAPKs and NF-κB. Here, we show that TMED1 associates with ST2L. Using a series of mutation and deletion constructs, we demonstrate that this interaction is mediated by the GOLD domain of TMED1 and the TIR domain of ST2L. Our findings also demonstrate that TMED1 is required for optimal IL-33-induced IL-8 and IL-6 production. This discovery provides additional support to the concept that the TMED family members are important players in innate immune signaling.
科研通智能强力驱动
Strongly Powered by AbleSci AI