光学
数值稳定性
数值分析
透射率
振幅
衍射
基质(化学分析)
严格耦合波分析
波长
计算机模拟
衍射光栅
物理
材料科学
数学分析
数学
机械
复合材料
作者
M. G. Moharam,T. K. Gaylord,Drew A. Pommet,Eric B. Grann
标识
DOI:10.1364/josaa.12.001077
摘要
An enhanced, numerically stable transmittance matrix approach is developed and is applied to the implementation of the rigorous coupled-wave analysis for surface-relief and multilevel gratings. The enhanced approach is shown to produce numerically stable results for excessively deep multilevel surface-relief dielectric gratings. The nature of the numerical instability for the classic transmission matrix approach in the presence of evanescent fields is determined. The finite precision of the numerical representation on digital computers results in insufficient accuracy in numerically representing the elements produced by inverting an ill-conditioned transmission matrix. These inaccuracies will result in numerical instability in the calculations for successive field matching between the layers. The new technique that we present anticipates and preempts these potential numerical problems. In addition to the full-solution approach whereby all the reflected and the transmitted amplitudes are calculated, a simpler, more efficient formulation is proposed for cases in which only the reflected amplitudes (or the transmitted amplitudes) are required. Incorporating this enhanced approach into the implementation of the rigorous coupled-wave analysis, we obtain numerically stable and convergent results for excessively deep (50 wavelengths), 16-level, asymmetric binary gratings. Calculated results are presented for both TE and TM polarization and for conical diffraction.
科研通智能强力驱动
Strongly Powered by AbleSci AI