Conditional Generative Adversarial Networks for 2D core grayscale image reconstruction from pore parameters

灰度 二值图像 人工智能 二进制数 计算机科学 图像(数学) 计算机视觉 数字图像 模式识别(心理学) 比例(比率) 图像处理 数学 物理 算术 量子力学
作者
H Song,Xiuhui Zhang,Fugui Li,Yongfei Yang
出处
期刊:Journal of Petroleum Science and Engineering [Elsevier BV]
卷期号:208: 109742-109742 被引量:1
标识
DOI:10.1016/j.petrol.2021.109742
摘要

Digital cores are of great significance for reservoir structure simulation, oil and gas exploration and development. Most existing digital core reconstruction methods only generate binary cores with complicated implementation processes, among other problems. To address these problems, this study proposed a combination of core pore parameters and conditional generative adversarial network (CGAN) to realize the 2D reconstruction of core grayscale images from only pore parameters (namely, text-to-image synthesis). The current text-to-image synthesis approaches still have many difficulties in generating fine images, but the technologies of image-to-image generation have improved drastically in recent years. Therefore, the proposed method involves two stages to avoid the difficulty of directly generating core grayscale images from pore parameters. In stage I, we preprocessed core sample images to obtain binary-grayscale image pairs, and then used the CGAN to learn the mapping from core binary images to real sample images. At the same time, the pores in the binary images were segmented and extracted to construct the pore component library. In stage II, on the basis of the given pore parameters, the corresponding pores were randomly extracted from the pore component library to generate binary images, and then the generated binary images were used as input for the trained CGAN model to produce core grayscale images. The experimental results showed that the core grayscale images reconstructed by the proposed method meet the pore conditions and reflect the basic characteristics of real cores.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
天天快乐应助栗子栗栗子采纳,获得10
刚刚
明明就发布了新的文献求助10
4秒前
核桃发布了新的文献求助10
5秒前
5秒前
鲨头完成签到 ,获得积分10
5秒前
6秒前
汉堡包应助善良的花菜采纳,获得10
8秒前
叶子完成签到 ,获得积分10
9秒前
9秒前
ldroc完成签到,获得积分10
10秒前
xiaoqiang009完成签到 ,获得积分10
10秒前
AbnerWang完成签到,获得积分10
11秒前
我是笨蛋发布了新的文献求助30
12秒前
ZZZ发布了新的文献求助10
13秒前
Lucas应助一安采纳,获得10
13秒前
KONG完成签到,获得积分10
13秒前
duyi0521完成签到,获得积分10
14秒前
阿木完成签到,获得积分10
14秒前
乐乐应助帮我下一下采纳,获得10
15秒前
evak完成签到,获得积分10
15秒前
Kkkkkk完成签到,获得积分10
16秒前
刘太冰完成签到,获得积分10
17秒前
17秒前
18秒前
xxw发布了新的文献求助10
20秒前
麦浪完成签到,获得积分10
20秒前
英俊的铭应助PU采纳,获得200
21秒前
善学以致用应助明明就采纳,获得10
21秒前
21秒前
hui发布了新的文献求助10
21秒前
zyf完成签到,获得积分10
22秒前
科研通AI6应助又何必呢采纳,获得10
22秒前
24秒前
24秒前
25秒前
麦浪发布了新的文献求助10
25秒前
wanci应助lslslslsllss采纳,获得20
26秒前
wuyuan完成签到,获得积分10
26秒前
27秒前
十伍发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258672
求助须知:如何正确求助?哪些是违规求助? 4420629
关于积分的说明 13760748
捐赠科研通 4294297
什么是DOI,文献DOI怎么找? 2356344
邀请新用户注册赠送积分活动 1352673
关于科研通互助平台的介绍 1313526