Reinforcement learning for batch process control: Review and perspectives

强化学习 过程(计算) 控制(管理) 计算机科学 模型预测控制 最优控制 过程控制 批处理 控制工程 工业工程 人工智能 工程类 数学优化 数学 操作系统 程序设计语言
作者
Haeun Yoo,Ha-Eun Byun,Dongho Han,Jay H. Lee
出处
期刊:Annual Reviews in Control [Elsevier]
卷期号:52: 108-119 被引量:73
标识
DOI:10.1016/j.arcontrol.2021.10.006
摘要

Batch or semi-batch processing is becoming more prevalent in industrial chemical manufacturing but it has not benefited from advanced control technologies to a same degree as continuous processing. This is due to its several unique aspects which pose challenges to implementing model-based optimal control, such as its highly nonstationary operation and significant run-to-run variabilities. While existing advanced control methods like model predictive control (MPC) have been extended to address some of the challenges, they still suffer from certain limitations which have prevented their widespread industrial adoption. Reinforcement learning (RL) where the agent learns the optimal policy by interacting with the system offers an alternative to the existing model-based methods and has potential for bringing significant improvements to industrial batch process control practice. With such motivation, this paper examines the advantages that RL offers over the traditional model-based optimal control methods and how it can be tailored to better address the characteristics of industrial batch process control problems. After a brief review of the existing batch control methods, the basic concepts and algorithms of RL are introduced and issues for applying them to batch process control problems are discussed. The nascent literature on the use of RL in batch process control is briefly reviewed, both in recipe optimization and tracking control, and our perspectives on future research directions are shared.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助蚂蚁工人采纳,获得30
1秒前
Ccwyhk完成签到,获得积分10
1秒前
1秒前
小蘑菇应助眯眯眼的谷冬采纳,获得10
1秒前
2秒前
2秒前
3秒前
jkdzp完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
5秒前
温暖的钻石完成签到,获得积分10
5秒前
6秒前
生动的沛白完成签到 ,获得积分10
6秒前
6秒前
MX120251336发布了新的文献求助10
6秒前
7秒前
墨尘发布了新的文献求助30
8秒前
量子星尘发布了新的文献求助10
10秒前
窗格晴语完成签到,获得积分10
10秒前
10秒前
善良白云关注了科研通微信公众号
11秒前
12秒前
13秒前
Hello应助生动海之采纳,获得10
13秒前
丘比特应助科研通管家采纳,获得10
15秒前
浮游应助科研通管家采纳,获得10
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
整齐唯雪发布了新的文献求助30
15秒前
浮游应助科研通管家采纳,获得10
15秒前
科研通AI6应助科研通管家采纳,获得10
15秒前
ding应助大气早晨采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
大模型应助科研通管家采纳,获得10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
浮游应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得15
16秒前
17秒前
zzx完成签到 ,获得积分10
17秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5700127
求助须知:如何正确求助?哪些是违规求助? 5135166
关于积分的说明 15229239
捐赠科研通 4855123
什么是DOI,文献DOI怎么找? 2605152
邀请新用户注册赠送积分活动 1556534
关于科研通互助平台的介绍 1514637