Two-Dimensional Nanofluidic Membranes toward Harvesting Salinity Gradient Power

渗透力 盐度 纳米技术 材料科学 功率(物理) 化学工程 正渗透 生物物理学 化学 海洋学 反渗透 工程类 地质学 生物 物理 热力学 生物化学
作者
Weiwen Xin,Lei Jiang,Liping Wen
出处
期刊:Accounts of Chemical Research [American Chemical Society]
卷期号:54 (22): 4154-4165 被引量:97
标识
DOI:10.1021/acs.accounts.1c00431
摘要

ConspectusThe salinity gradient between seawater and river water has been identified as a promising, clean, renewable, and sustainable energy source that can be converted into electricity using ion-selective membranes in a reverse electrodialysis (RED) configuration. However, the major hindrance to current salinity gradient power (SGP) conversion is its poor energy efficiency due to the use of low-performance membrane processes, which affords power for neither miniaturized devices nor industrial-level applications. Nanofluidics, which combines strong confinement and surface charge effects at the nanoscale, contributes to novel transport properties, including excellent ion selectivity and high ion throughput; thus, nanofluidics may lead to technological breakthroughs and act as an emerging platform for harnessing SGP. Recently, two-dimensional (2D) materials have provided impressive energy extraction performance and further insight into fundamental transport mechanisms and theoretical feasibility. To reach the commercialization benchmark and real-world applications, an array of nanopores and channels that can be scaled up to industrial sizes is in high demand; additionally, it remains challenging to develop macroscale nanofluidic membranes that meet the "selectivity versus throughput" dual requirement. In the first section, we start with our understanding of the underlying mechanism of ion–channel interactions and transport characteristics in nanofluidic channel systems from the microscale to the macroscale. We review our recent efforts in this field by constructing a heterojunction with asymmetric ion transport behavior that generates rectification of the ion flux and creates an osmotic diode, which is composed of two nanofluidic layers with opposite polar charges and different chemical compositions. Another efficient way to improve the performance of the system is introducing charged functional materials intercalated into laminar 2D nanosheets. The intercalated nanofluidic material can be explained by two classical models to account for the synergistic effects that (i) improve the stability and mechanical properties of 2D materials with a fixed interlayer spacing and (ii) provide space charge for modulating ion diffusion; both of these effects contribute to its considerable energy conversion performance. Further, layer-by-layer membranes are superior to traditional membranes consisting of a simple stack because they retain their repulsion effect toward co-ions, largely strengthening the efficiency of ion separation and conversion. In particular, we highlight our views on the role of the 2D phase structure (e.g., semiconductor 2H phase and metallic 1T phase) in which the two phases differ from each other in physical and chemical properties, including ionic conductance, surface charge, and wetting, thereby presenting a state-of-the-art avenue for controlling ion transport. In view of the nature of 2D materials, we also report improved osmotic energy harvesting by exploiting the photoinduced heat gradient and electrons that increase ion mobility and surface charge, respectively. Finally, we point out specific research topics in which a combined project can certainly come into the limelight. For example, we discuss the combination of SGP with desalination systems and water splitting. We expect that this Account will stimulate further efforts toward functionalized 2D nanoporous materials and facilitate interdisciplinary efforts in chemistry, material engineering, environmental science, and nanotechnology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文的莞发布了新的文献求助10
1秒前
林夕发布了新的文献求助10
1秒前
研友_LMgz0Z发布了新的文献求助10
2秒前
Goodenough完成签到 ,获得积分10
6秒前
洁净的正豪完成签到 ,获得积分10
6秒前
橡树完成签到,获得积分10
7秒前
可靠的电源完成签到,获得积分10
11秒前
清颜完成签到 ,获得积分10
11秒前
12秒前
LeonZhang完成签到 ,获得积分10
12秒前
郝君颖发布了新的文献求助30
12秒前
652183758完成签到 ,获得积分10
13秒前
LOST完成签到 ,获得积分10
18秒前
shanshanerchuan完成签到,获得积分10
19秒前
Dsunflower完成签到 ,获得积分10
19秒前
飘逸问晴完成签到,获得积分10
20秒前
PhD-SCAU完成签到,获得积分10
21秒前
胡久亮完成签到,获得积分10
22秒前
22秒前
Owen应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得10
24秒前
乐乐应助科研通管家采纳,获得10
24秒前
小蘑菇应助科研通管家采纳,获得10
24秒前
科研通AI2S应助科研通管家采纳,获得10
24秒前
24秒前
冰魂应助科研通管家采纳,获得50
24秒前
大模型应助科研通管家采纳,获得10
24秒前
充电宝应助科研通管家采纳,获得10
24秒前
天天快乐应助科研通管家采纳,获得10
24秒前
科研通AI5应助科研通管家采纳,获得30
24秒前
FashionBoy应助科研通管家采纳,获得10
24秒前
故酒应助科研通管家采纳,获得10
25秒前
Ava应助科研通管家采纳,获得80
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
雨夜星空应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
深情安青应助科研通管家采纳,获得10
25秒前
科研通AI5应助科研通管家采纳,获得10
25秒前
科目三应助科研通管家采纳,获得10
25秒前
脑洞疼应助科研通管家采纳,获得10
25秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776299
求助须知:如何正确求助?哪些是违规求助? 3321743
关于积分的说明 10207616
捐赠科研通 3037087
什么是DOI,文献DOI怎么找? 1666533
邀请新用户注册赠送积分活动 797544
科研通“疑难数据库(出版商)”最低求助积分说明 757870