弗雷明翰风险评分
比例危险模型
腰围
医学
冠状动脉疾病
队列
内科学
生命银行
特征选择
心脏病学
疾病
人工智能
机器学习
计算机科学
体质指数
生物信息学
生物
作者
Saaket Agrawal,Marcus D. R. Klarqvist,Connor A. Emdin,Aniruddh P. Patel,Manish Paranjpe,Patrick T. Ellinor,Anthony Philippakis,Kenney Ng,Puneet Batra,Amit V. Khera
出处
期刊:Patterns
[Elsevier]
日期:2021-10-04
卷期号:2 (12): 100364-100364
被引量:33
标识
DOI:10.1016/j.patter.2021.100364
摘要
Current cardiovascular risk assessment tools use a small number of predictors. Here, we study how machine learning might: (1) enable principled selection from a large multimodal set of candidate variables and (2) improve prediction of incident coronary artery disease (CAD) events. An elastic net-based Cox model (ML4HEN-COX) trained and evaluated in 173,274 UK Biobank participants selected 51 predictors from 13,782 candidates. Beyond most traditional risk factors, ML4HEN-COX selected a polygenic score, waist circumference, socioeconomic deprivation, and several hematologic indices. A more than 30-fold gradient in 10-year risk estimates was noted across ML4HEN-COX quintiles, ranging from 0.25% to 7.8%. ML4HEN-COX improved discrimination of incident CAD (C-statistic = 0.796) compared with the Framingham risk score, pooled cohort equations, and QRISK3 (range 0.754-0.761). This approach to variable selection and model assessment is readily generalizable to a broad range of complex datasets and disease endpoints.
科研通智能强力驱动
Strongly Powered by AbleSci AI