鉴别器
规范化(社会学)
对抗制
计算机科学
生成语法
人工智能
生成对抗网络
模式识别(心理学)
算法
深度学习
电信
人类学
探测器
社会学
作者
Yi-Lun Wu,Hong-Han Shuai,Zhi Rui Tam,Hong-Yu Chiu
出处
期刊:Cornell University - arXiv
日期:2021-09-06
被引量:1
标识
DOI:10.48550/arxiv.2109.02235
摘要
In this paper, we propose a novel normalization method called gradient normalization (GN) to tackle the training instability of Generative Adversarial Networks (GANs) caused by the sharp gradient space. Unlike existing work such as gradient penalty and spectral normalization, the proposed GN only imposes a hard 1-Lipschitz constraint on the discriminator function, which increases the capacity of the discriminator. Moreover, the proposed gradient normalization can be applied to different GAN architectures with little modification. Extensive experiments on four datasets show that GANs trained with gradient normalization outperform existing methods in terms of both Frechet Inception Distance and Inception Score.
科研通智能强力驱动
Strongly Powered by AbleSci AI