亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

RSegNet: A Joint Learning Framework for Deformable Registration and Segmentation

分割 人工智能 图像配准 计算机科学 一致性(知识库) 计算机视觉 尺度空间分割 微分同胚 图像分割 基于分割的对象分类 相似性(几何) 模式识别(心理学) 图像(数学) 数学 数学分析
作者
Liang Qiu,Hongliang Ren
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:19 (3): 2499-2513 被引量:15
标识
DOI:10.1109/tase.2021.3087868
摘要

Medical image segmentation and registration are two tasks to analyze the anatomical structures in clinical research. Still, deep-learning solutions utilizing the connections between segmentation and registration remain underdiscovered. This article designs a joint learning framework named RSegNet that can realize concurrent deformable registration and segmentation by minimizing an integrated loss function, including three parts: diffeomorphic registration loss, segmentation similarity loss, and dual-consistency supervision loss. The probabilistic diffeomorphic registration branch could benefit from the auxiliary segmentations available from the segmentation branch to achieve anatomical consistency and better deformation regularity by dual-consistency supervision. Simultaneously, the segmentation performance could also be improved by data augmentation based on the registration with well-behaved diffeomorphic guarantees. Experiments on the human brain 3-D magnetic resonance images have been implemented to demonstrate the effectiveness of our approach. We trained and validated RSegNet with 1000 images and tested its performances on four public datasets, which shows that our method successfully yields concurrent improvements of both segmentation and registration compared with separately trained networks. Specifically, our method can increase the accuracy of segmentation and registration by 7.0% and 1.4%, respectively, in terms of Dice scores. Note to Practitioners —Registration and segmentation of medical images are two significant tasks in medical research and clinical application. However, most existing approaches consider these two tasks independently while neglecting the potential association between them. Therefore, we suggest a new approach that combines these two tasks into one joint deep learning framework, boosting registration, and segmentation performance by introducing dual-consistency supervision. Besides, our framework could generate outputs within 1 s by taking an affinely aligned medical image pair as input, which is suitable for time-critical requirements in a clinic. We tested it on four public datasets and achieved state-of-the-art performance to demonstrate the proposed method's feasibility and robustness. Furthermore, our proposed RSegNet is a general learning framework suitable for various image modalities and anatomical structures. Hence, we expect our framework to serve as a practical clinical tool to speed up medical image analysis procedures and improve diagnostic accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WATeam发布了新的文献求助10
1秒前
candy teen完成签到,获得积分10
3秒前
领导范儿应助含蓄的荔枝采纳,获得10
25秒前
高数数完成签到 ,获得积分10
28秒前
34秒前
37秒前
39秒前
123发布了新的文献求助10
42秒前
赘婿应助Silence采纳,获得10
51秒前
55秒前
情怀应助123采纳,获得10
1分钟前
英俊的铭应助含蓄的荔枝采纳,获得10
1分钟前
jieruwei完成签到 ,获得积分10
1分钟前
Eve完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
Silence发布了新的文献求助10
2分钟前
秋千先生完成签到 ,获得积分10
2分钟前
秋千先生关注了科研通微信公众号
2分钟前
健康的大船完成签到 ,获得积分10
2分钟前
2分钟前
lalala完成签到 ,获得积分10
2分钟前
2分钟前
上官若男应助asdf采纳,获得10
2分钟前
脉动发布了新的文献求助10
2分钟前
2分钟前
VPN不好用完成签到,获得积分10
2分钟前
香蕉觅云应助脉动采纳,获得10
2分钟前
2分钟前
asdf发布了新的文献求助10
2分钟前
2分钟前
123发布了新的文献求助10
2分钟前
香山叶正红完成签到 ,获得积分10
2分钟前
彭于晏应助123采纳,获得10
3分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
3分钟前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815770
求助须知:如何正确求助?哪些是违规求助? 3359317
关于积分的说明 10402144
捐赠科研通 3077165
什么是DOI,文献DOI怎么找? 1690112
邀请新用户注册赠送积分活动 813659
科研通“疑难数据库(出版商)”最低求助积分说明 767713