Remote sensing image super-resolution and object detection: Benchmark and state of the art

计算机科学 水准点(测量) 目标检测 人工智能 对象(语法) 计算机视觉 特征(语言学) 失真(音乐) 图像分辨率 模式识别(心理学) 背景(考古学) 比例(比率) 遥感 地理 哲学 考古 地图学 放大器 语言学 带宽(计算) 计算机网络
作者
Yi Wang,Syed Muhammad Arsalan Bashir,Mahrukh Khan,Qudrat Ullah,Rui Wang,Yilin Song,Zhe Guo,Y. Niu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:197: 116793-116793 被引量:79
标识
DOI:10.1016/j.eswa.2022.116793
摘要

For the past two decades, there have been significant efforts to develop methods for object detection in Remote Sensing (RS) images. In most cases, the datasets for small object detection in remote sensing images are inadequate. Many researchers used scene classification datasets for object detection, which has its limitations; for example, the large-sized objects outnumber the small objects in object categories. Thus, they lack diversity; this further affects the detection performance of small object detectors in RS images. This paper reviews current datasets and object detection methods (deep learning-based) for remote sensing images. We also propose a large-scale, publicly available benchmark Remote Sensing Super-resolution Object Detection (RSSOD) dataset. The RSSOD dataset consists of 1,759 hand-annotated images with 22,091 instances of very high-resolution (VHR) images with a spatial resolution of ∼ 0.05 m. There are five classes with varying frequencies of labels per class; the images are annotated in You Only Look Once (YOLO) and Common Objects in Context (COCO) format. The image patches are extracted from satellite images, including real image distortions such as tangential scale distortion and skew distortion. The proposed RSSOD dataset will help researchers benchmark the state-of-the-art object detection methods across various classes, especially for small objects using image super-resolution. We also propose a novel Multi-class Cyclic super-resolution Generative adversarial network with Residual feature aggregation (MCGR) and auxiliary YOLOv5 detector to benchmark image super-resolution-based object detection and compare with the existing state-of-the-art methods based on image super-resolution (SR). The proposed MCGR achieved state-of-the-art performance for image SR with an improvement of 1.2 dB in peak signal-to-noise ratio (PSNR) compared to the current state-of-the-art non-local sparse network (NLSN). MCGR achieved best object detection mean average precisions (mAPs) of 0.758, 0.881, 0.841, and 0.983, respectively, for five-class, four-class, two-class, and single classes, respectively surpassing the performance of the state-of-the-art object detectors YOLOv5, EfficientDet, Faster RCNN, SSD, and RetinaNet.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
英俊的铭应助lxd采纳,获得10
1秒前
1秒前
2秒前
Akim应助一啊呀采纳,获得10
2秒前
嘻嘻子完成签到,获得积分10
3秒前
3秒前
Akim应助活ni的pig采纳,获得10
3秒前
Sunshine发布了新的文献求助10
4秒前
义气乐儿发布了新的文献求助10
5秒前
5秒前
Hello应助bofu采纳,获得10
6秒前
7秒前
7秒前
moodlunatic完成签到,获得积分10
7秒前
封宇完成签到,获得积分10
7秒前
科研通AI5应助花生米35采纳,获得10
8秒前
8秒前
9秒前
SYLH应助不知疲倦的追梦人采纳,获得10
9秒前
dududuudu发布了新的文献求助10
9秒前
zhiruo完成签到,获得积分10
10秒前
10秒前
ding应助syy采纳,获得10
11秒前
11秒前
capvirgo完成签到 ,获得积分10
11秒前
11秒前
爱看文献的七七完成签到,获得积分10
12秒前
an发布了新的文献求助10
12秒前
moodlunatic发布了新的文献求助10
13秒前
13秒前
顺其自然_666888完成签到,获得积分10
14秒前
14秒前
义气乐儿完成签到,获得积分10
16秒前
Eden完成签到,获得积分10
16秒前
bofu发布了新的文献求助10
16秒前
17秒前
bkagyin应助大力八宝粥采纳,获得10
17秒前
搜集达人应助DoctorDiDi采纳,获得10
17秒前
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814775
求助须知:如何正确求助?哪些是违规求助? 3358942
关于积分的说明 10398332
捐赠科研通 3076344
什么是DOI,文献DOI怎么找? 1689769
邀请新用户注册赠送积分活动 813254
科研通“疑难数据库(出版商)”最低求助积分说明 767599