亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Deep Learning–Based Automated Thrombolysis in Cerebral Infarction Scoring: A Timely Proof-of-Principle Study

医学 数字减影血管造影 溶栓 人工智能 血管造影 冲程(发动机) 放射科 大脑中动脉 机器学习 内科学 计算机科学 心肌梗塞 机械工程 工程类 缺血
作者
Maximilian Nielsen,Moritz Waldmann,Andreas Frölich,Fabian Flottmann,Evelin Hristova,Martin Bendszus,Fatih Şeker,Jens Fiehler,Thilo Sentker,René Werner
出处
期刊:Stroke [Lippincott Williams & Wilkins]
卷期号:52 (11): 3497-3504 被引量:11
标识
DOI:10.1161/strokeaha.120.033807
摘要

Mechanical thrombectomy is an established procedure for treatment of acute ischemic stroke. Mechanical thrombectomy success is commonly assessed by the Thrombolysis in Cerebral Infarction (TICI) score, assigned by visual inspection of X-ray digital subtraction angiography data. However, expert-based TICI scoring is highly observer-dependent. This represents a major obstacle for mechanical thrombectomy outcome comparison in, for instance, multicentric clinical studies. Focusing on occlusions of the M1 segment of the middle cerebral artery, the present study aimed to develop a deep learning (DL) solution to automated and, therefore, objective TICI scoring, to evaluate the agreement of DL- and expert-based scoring, and to compare corresponding numbers to published scoring variability of clinical experts.The study comprises 2 independent datasets. For DL system training and initial evaluation, an in-house dataset of 491 digital subtraction angiography series and modified TICI scores of 236 patients with M1 occlusions was collected. To test the model generalization capability, an independent external dataset with 95 digital subtraction angiography series was analyzed. Characteristics of the DL system were modeling TICI scoring as ordinal regression, explicit consideration of the temporal image information, integration of physiological knowledge, and modeling of inherent TICI scoring uncertainties.For the in-house dataset, the DL system yields Cohen’s kappa, overall accuracy, and specific agreement values of 0.61, 71%, and 63% to 84%, respectively, compared with the gold standard: the expert rating. Values slightly drop to 0.52/64%/43% to 87% when the model is, without changes, applied to the external dataset. After model updating, they increase to 0.65/74%/60% to 90%. Literature Cohen’s kappa values for expert-based TICI scoring agreement are in the order of 0.6.The agreement of DL- and expert-based modified TICI scores in the range of published interobserver variability of clinical experts highlights the potential of the proposed DL solution to automated TICI scoring.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
直率的笑翠完成签到 ,获得积分10
46秒前
longge233233完成签到,获得积分10
49秒前
SCI的李完成签到 ,获得积分10
54秒前
ffff完成签到 ,获得积分10
56秒前
1分钟前
lalala发布了新的文献求助10
1分钟前
灵巧的语兰完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
ding应助HJJHJH采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
herococa完成签到,获得积分10
2分钟前
LRxxx完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
HJJHJH发布了新的文献求助10
3分钟前
Murphy完成签到 ,获得积分10
3分钟前
敏感剑鬼关注了科研通微信公众号
3分钟前
Ji完成签到,获得积分10
4分钟前
忐忑的黑猫应助麻瓜采纳,获得10
4分钟前
可可发布了新的文献求助10
4分钟前
麻瓜完成签到,获得积分10
4分钟前
jokerhoney完成签到,获得积分10
4分钟前
automan发布了新的文献求助10
4分钟前
5分钟前
笑笑发布了新的文献求助10
5分钟前
安静的瑾瑜完成签到 ,获得积分10
5分钟前
淡定的安柏完成签到,获得积分10
5分钟前
笑笑完成签到,获得积分10
5分钟前
月亮完成签到 ,获得积分10
5分钟前
FashionBoy应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
灵巧的语兰关注了科研通微信公众号
5分钟前
Li完成签到,获得积分10
5分钟前
rengar完成签到,获得积分10
6分钟前
稻子完成签到 ,获得积分10
6分钟前
王桑完成签到 ,获得积分10
6分钟前
望其项背完成签到,获得积分10
7分钟前
小胡爱科研完成签到 ,获得积分10
7分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780810
求助须知:如何正确求助?哪些是违规求助? 3326334
关于积分的说明 10226562
捐赠科研通 3041495
什么是DOI,文献DOI怎么找? 1669449
邀请新用户注册赠送积分活动 799051
科研通“疑难数据库(出版商)”最低求助积分说明 758732