纳滤
聚酰胺
膜
过滤(数学)
降级(电信)
化学
化学工程
溴
色谱法
高分子化学
有机化学
生物化学
工程类
数学
电信
统计
作者
Huihui Zhao,Linyan Yang,Xueming Chen,Sheng Mei,Guomin Cao,Lankun Cai,Shujuan Meng,Chuyang Y. Tang
标识
DOI:10.1021/acs.est.1c00206
摘要
The potential coexistence and interaction of bromine and polyamide membranes during membrane-based water treatment prompts us to investigate the effect of bromine on membrane performance. For fully aromatic polyamide membrane NF90 exposed under a mild bromination condition (10 mg/L), bromine incorporation resulted in more negatively charged (-13 vs -25 mV) and hydrophobic (55.2 vs 58.9°) surfaces and narrower pore channels (0.3 vs 0.29 nm). The permeabilities of water and neutral solutes were reduced by 64 and 69-87%, respectively, which was attributed to the decreased effective pore radius and hydrophilicity. NaCl permeability was reduced by 90% as a synergistic result of enhanced size exclusion and charge repulsion. The further exposure (100 and 500 mg/L bromine) resulted in a more hydrophobic surface (61.7 and 65.5°) and the minor further reduction for water and solute permeabilities (1-9%). Compared with chlorine, the different incorporation efficiency and properties (e.g., atomic size, hydrophilicity) of bromine resulted in opposite trends and/or different degrees for the variation of physicochemical properties and filtration performance of membranes. The bromine incorporation, the shift and disappearance of three characteristic bands, and the increased O/N ratio and calcium content indicated the degradation pathways of N-bromination and bromination-promoted hydrolysis under mild bromination conditions (480 mg/L·h). The further ring-bromination occurred after severe bromine exposure (4800-24,000 mg/L·h). The semi-aromatic polyamide membrane NF270 underwent a similar but less significant deteriorated filtration performance compared with NF90, which requires a different explanation.
科研通智能强力驱动
Strongly Powered by AbleSci AI