亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Deep Ordinal Distortion Estimation Approach for Distortion Rectification

失真(音乐) 整改 人工智能 数学 图像校正 计算机视觉 计算机科学 模式识别(心理学) 算法 计算机网络 量子力学 物理 功率(物理) 放大器 带宽(计算)
作者
Kang Liao,Chunyu Lin,Yao Zhao
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:30: 3362-3375 被引量:25
标识
DOI:10.1109/tip.2021.3061283
摘要

Radial distortion has widely existed in the images captured by popular wide-angle cameras and fisheye cameras. Despite the long history of distortion rectification, accurately estimating the distortion parameters from a single distorted image is still challenging. The main reason is that these parameters are implicit to image features, influencing the networks to learn the distortion information fully. In this work, we propose a novel distortion rectification approach that can obtain more accurate parameters with higher efficiency. Our key insight is that distortion rectification can be cast as a problem of learning an ordinal distortion from a single distorted image. To solve this problem, we design a local-global associated estimation network that learns the ordinal distortion to approximate the realistic distortion distribution. In contrast to the implicit distortion parameters, the proposed ordinal distortion has a more explicit relationship with image features, and significantly boosts the distortion perception of neural networks. Considering the redundancy of distortion information, our approach only uses a patch of the distorted image for the ordinal distortion estimation, showing promising applications in efficient distortion rectification. In the distortion rectification field, we are the first to unify the heterogeneous distortion parameters into a learning-friendly intermediate representation through ordinal distortion, bridging the gap between image feature and distortion rectification. The experimental results demonstrate that our approach outperforms the state-of-the-art methods by a significant margin, with approximately 23% improvement on the quantitative evaluation while displaying the best performance on visual appearance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助twk采纳,获得10
55秒前
andrele应助科研通管家采纳,获得10
1分钟前
乾坤侠客LW完成签到,获得积分10
2分钟前
2分钟前
暖暖完成签到,获得积分10
2分钟前
北辰zdx完成签到,获得积分10
2分钟前
xiaxia关注了科研通微信公众号
2分钟前
cdercder应助北辰zdx采纳,获得30
2分钟前
xiaxia完成签到,获得积分10
2分钟前
激动的似狮完成签到,获得积分10
3分钟前
Banana完成签到,获得积分20
3分钟前
啊啊啊啊啊啊啊啊啊啊完成签到 ,获得积分10
3分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
壮观的谷冬完成签到 ,获得积分10
4分钟前
打打应助XX采纳,获得10
4分钟前
XX完成签到,获得积分10
4分钟前
4分钟前
4分钟前
站我发布了新的文献求助10
5分钟前
CipherSage应助站我采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
LRxxx完成签到 ,获得积分10
5分钟前
6分钟前
科研通AI5应助y234j788采纳,获得10
6分钟前
秀丽焦完成签到 ,获得积分10
6分钟前
6分钟前
英俊的铭应助wack采纳,获得10
7分钟前
Hillson完成签到,获得积分10
7分钟前
7分钟前
Kate发布了新的文献求助10
7分钟前
科研通AI2S应助LIN采纳,获得20
7分钟前
科研小狗完成签到 ,获得积分20
7分钟前
西蓝花香菜完成签到 ,获得积分10
8分钟前
8分钟前
y234j788发布了新的文献求助10
8分钟前
月亮完成签到 ,获得积分10
8分钟前
KaK发布了新的文献求助10
9分钟前
9分钟前
KaK完成签到,获得积分10
9分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792512
求助须知:如何正确求助?哪些是违规求助? 3336729
关于积分的说明 10281976
捐赠科研通 3053482
什么是DOI,文献DOI怎么找? 1675649
邀请新用户注册赠送积分活动 803609
科研通“疑难数据库(出版商)”最低求助积分说明 761468