化学
抗氧化剂
氧化应激
脂质代谢
KEAP1型
GCLC公司
药理学
谷胱甘肽
生物化学
酶
阿托伐他汀
生物
转录因子
基因
作者
Yimeng Wang,Chao Wang,Meinan Xie,Tianli Tang,Zhaohui Wang,Xiangping Nie
标识
DOI:10.1016/j.envpol.2021.117879
摘要
Abstract The potential effects of the environmental residues of Atorvastatin (ATV) as a widely used antilipemic agent on aquatic organisms deserve more investigations because of its high detection frequency in environment. The responses of Nrf2/Keap1 signaling pathway (including the transcriptional expression of Nrf2, Keap1, GCLC, GPx, GST, SOD, CAT, Trx2, TrxR, HMG-CoAR and PGC-1α) in Mugilogobius abei were investigated under acute and sub-chronic exposure of ATV in the simulated laboratory conditions. The changes of related enzymatic activity (GST, GPx, SOD, CAT and TrxR) and the content of GSH and MDA combining with the observation of histology sections of liver in M. abei were also addressed. The results show Nrf2 and its downstream antioxidant genes were induced to different degrees under ATV exposure. The activities of antioxidant enzymes were inhibited at 24 h and 72 h but induced/recovered at 168 h. Correspondingly, negatively correlated to GSH, MDA increased first but reduced then. Notably, with the increase of exposure concentration/time, the volume of lipid cells in liver decreased, suggesting more lipid decomposition. Therefore, lipid metabolism was suppressed (down-regulation of PGC-1α) and cholesterol biosynthesis was induced (up-regulation of HMG-COAR) at 168 h. In short, ATV brings oxidative stress to M. abei in the initial phase. However, with the increase of exposure time, ATV activates Nrf2/Keap1 signaling pathway and improves the antioxidant capacity of M. abei to reverse this adverse effect. ATV also affects lipid metabolism of M. abei by reducing cholesterol content and accelerating lipid decomposition.
科研通智能强力驱动
Strongly Powered by AbleSci AI