Monte Carlo DropBlock for modeling uncertainty in object detection

计算机科学 人工智能 卷积神经网络 深度学习 目标检测 分割 蒙特卡罗方法 不确定度量化 机器学习 变压器 贝叶斯推理 贝叶斯概率 模式识别(心理学) 数学 工程类 统计 电气工程 电压
作者
Sai Harsha Yelleni,Deepshikha Kumari,P. K. Srijith,C. Krishna Mohan
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:146: 110003-110003 被引量:28
标识
DOI:10.1016/j.patcog.2023.110003
摘要

With the advancements made in deep learning, computer vision problems have seen a great improvement in performance. However, in many real-world applications such as autonomous driving vehicles, the risk associated with incorrect predictions of objects or segmentation of images is very high. Standard deep learning models for object detection and segmentation such as YOLO models are often overconfident in their predictions and do not take into account the uncertainty in predictions on out-of-distribution data. In this work, we propose an efficient and effective approach, Monte-Carlo DropBlock (MC-DropBlock), to model uncertainty in YOLO and convolutional vision Transformers for object detection. The proposed approach applies drop-block during training time and testing time on the convolutional layer of the deep learning models such as YOLO and convolutional transformer. We theoretically show that this leads to a Bayesian convolutional neural network capable of capturing the epistemic uncertainty in the model. Additionally, we capture the aleatoric uncertainty in the data using a Gaussian likelihood. We demonstrate the effectiveness of the proposed approach on modeling uncertainty in object detection and segmentation tasks using out-of-distribution experiments. Experimental results show that MC-DropBlock improves the generalization, calibration, and uncertainty modeling capabilities of YOLO models and convolutional Transformer models for object detection and segmentation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xhy完成签到,获得积分20
刚刚
有魅力的井完成签到,获得积分10
1秒前
1秒前
hugugu完成签到,获得积分10
1秒前
3秒前
3秒前
木雨发布了新的文献求助10
4秒前
美由姬完成签到,获得积分10
5秒前
7秒前
8秒前
烟云散发布了新的文献求助10
9秒前
9秒前
10秒前
10秒前
mokLee63完成签到,获得积分10
11秒前
赵柄尧发布了新的文献求助10
12秒前
初识发布了新的文献求助30
13秒前
ztayx完成签到 ,获得积分10
14秒前
蜜CC完成签到,获得积分20
15秒前
托比发布了新的文献求助10
16秒前
Kvolu29完成签到,获得积分10
16秒前
苹果千秋完成签到 ,获得积分10
19秒前
大模型应助ormita采纳,获得30
19秒前
托比完成签到,获得积分10
26秒前
牛马人生完成签到,获得积分10
26秒前
ShawnLyu应助有魅力的井采纳,获得10
26秒前
小满完成签到,获得积分10
27秒前
甜蜜浩然完成签到,获得积分10
28秒前
乐乐应助aaawen采纳,获得10
29秒前
SYLH应助执着采纳,获得10
29秒前
haki完成签到,获得积分20
30秒前
36秒前
谨慎的咖啡豆完成签到,获得积分10
36秒前
天天快乐应助勤劳睫毛采纳,获得10
38秒前
充电宝应助鲍志泽采纳,获得10
38秒前
闪电大卫发布了新的文献求助10
39秒前
aaawen发布了新的文献求助10
39秒前
善学以致用应助chuxd采纳,获得10
39秒前
39秒前
great7701完成签到,获得积分10
42秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
E-commerce live streaming impact analysis based on stimulus-organism response theory 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801455
求助须知:如何正确求助?哪些是违规求助? 3347217
关于积分的说明 10332634
捐赠科研通 3063494
什么是DOI,文献DOI怎么找? 1681768
邀请新用户注册赠送积分活动 807719
科研通“疑难数据库(出版商)”最低求助积分说明 763867