DeepSperm: A robust and real-time bull sperm-cell detection in densely populated semen videos

计算机科学 人工智能 混淆矩阵 目标检测 过度拟合 帧速率 计算机视觉 帧(网络) 模式识别(心理学) 对比度(视觉) 网络数据包 人工神经网络 电信 计算机网络
作者
Priyanto Hidayatullah,Xueting Wang,Toshihiko Yamasaki,Tati Latifah Mengko,Rinaldi Munir,Anggraini Barlian,Eros Sukmawati,Supraptono Supraptono
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:209: 106302-106302 被引量:24
标识
DOI:10.1016/j.cmpb.2021.106302
摘要

Object detection is a primary research interest in computer vision. Sperm-cell detection in a densely populated bull semen microscopic observation video presents challenges that are more difficult than those presented by other general object-detection cases. These challenges include partial occlusion, vast number of objects in a single video frame, tiny size of the object, artifacts, low contrast, low video resolution, and blurry objects because of the rapid movement of the sperm cells. This study proposes a deep neural network architecture, called DeepSperm, that solves the aforementioned problems and is more accurate and faster than state-of-the-art architectures. In the proposed architecture, we use only one detection layer, which is specific for small object detection. For handling overfitting and increasing accuracy, we set a higher input network resolution, use a dropout layer, and perform data augmentation on saturation and exposure. Several hyper-parameters are tuned to achieve better performance. Mean average precision (mAP), confusion matrix, precision, recall, and F1-score are used to measure accuracy. Frame per second (fps) is used to measure speed. We compare our proposed method with you only look once (YOLO) v3 and YOLOv4. In our experiment, we achieve 94.11 mAP on the test dataset, F1-score of 0.93, and a processing speed of 51.9 fps. In comparison with YOLOv4, our proposed method is 2.18 x faster on testing, and 2.9 x faster on training with a small dataset, while achieving comparative detection accuracy. The weights file size was also reduced significantly, with one-twentieth that of YOLOv4. Moreover, it requires a 1.07 x less graphical processing unit (GPU) memory than YOLOv4. This study proposes DeepSperm, which is a simple, effective, and efficient deep neural network architecture with its hyper-parameters and configuration to detect bull sperm cells robustly in real time. In our experiments, we surpass the state-of-the-art in terms of accuracy, speed, and resource needs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
调皮从筠完成签到 ,获得积分10
刚刚
WXR完成签到,获得积分10
1秒前
CodeCraft应助pansy采纳,获得30
4秒前
共享精神应助韭黄采纳,获得10
4秒前
天天快乐应助xiaofei采纳,获得10
4秒前
QIANGYI完成签到 ,获得积分10
5秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
科研菜鸟完成签到,获得积分10
6秒前
organic tirrttf完成签到,获得积分10
7秒前
共享精神应助读书的时候采纳,获得10
9秒前
11秒前
图图发布了新的文献求助10
11秒前
开心的母鸡完成签到,获得积分10
12秒前
Brave发布了新的文献求助10
14秒前
huaner完成签到,获得积分10
16秒前
16秒前
小花生完成签到 ,获得积分10
19秒前
bunny完成签到,获得积分10
20秒前
迷人的寒风完成签到,获得积分10
21秒前
不想太多完成签到,获得积分10
22秒前
韭黄发布了新的文献求助10
22秒前
lu完成签到,获得积分10
23秒前
江雁完成签到,获得积分10
24秒前
聪慧芷巧完成签到,获得积分10
25秒前
nannan完成签到 ,获得积分10
25秒前
都会完成签到 ,获得积分10
26秒前
今后应助韭黄采纳,获得10
27秒前
李健应助傲娇的云朵采纳,获得10
27秒前
天明完成签到,获得积分10
27秒前
Orange应助读书的时候采纳,获得10
28秒前
慕山完成签到 ,获得积分10
29秒前
1122完成签到 ,获得积分10
29秒前
今年我必胖20斤完成签到,获得积分10
29秒前
32秒前
life完成签到,获得积分10
35秒前
Olivia发布了新的文献求助10
35秒前
傲娇的云朵完成签到,获得积分10
36秒前
啦啦啦完成签到 ,获得积分10
37秒前
仅仅完成签到 ,获得积分10
38秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Exosomes from Umbilical Cord-Originated Mesenchymal Stem Cells (MSCs) Prevent and Treat Diabetic Nephropathy in Rats via Modulating the Wingless-Related Integration Site (Wnt)/β-Catenin Signal Transduction Pathway 500
Global Eyelash Assessment scale (GEA) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4030298
求助须知:如何正确求助?哪些是违规求助? 3569045
关于积分的说明 11356519
捐赠科研通 3299689
什么是DOI,文献DOI怎么找? 1816822
邀请新用户注册赠送积分活动 890936
科研通“疑难数据库(出版商)”最低求助积分说明 813978