半经典物理学
哈密顿量(控制论)
耦合常数
声子
物理
振幅
爱因斯坦系数
爱因斯坦
黛比
化学
原子物理学
量子力学
热力学
量子
数学优化
数学
谱线
摘要
Radiationless transitions of a solute molecule embedded in a crystalline solvent are treated in close analogy to radiative transitions. A semiclassical interaction Hamiltonian employing empirically determined coupling constants connects solute particles to a force field amplitude set up by the phonons of the solvent. By relating this amplitude to phonon energy density an Einstein B coefficient is derived. Debye's formula for the phonon energy density combined with thermodynamic arguments yield Einstein A coefficients. It is shown that the theory (1) explains the fast rates of radiationless transitions, (2) provides for temperature dependence, (3) has a cutoff frequency for radiationless transition, (4) provides for the Franck—Condon principle, and (5) explains the lack of selection rules. A value is derived for the empirical coupling constants.
科研通智能强力驱动
Strongly Powered by AbleSci AI