Robust Visual Servoing

视觉伺服 人工智能 计算机视觉 计算机科学 机器人 稳健性(进化) 初始化 抓住 姿势 服务机器人 对象(语法) 过程(计算) 方向(向量空间) 数学 生物化学 化学 几何学 基因 程序设计语言 操作系统
作者
Danica Kragić,Henrik I. Christensen
出处
期刊:The International Journal of Robotics Research [SAGE Publishing]
卷期号:22 (10-11): 923-939 被引量:57
标识
DOI:10.1177/027836490302210009
摘要

For service robots operating in domestic environments, it is not enough to consider only control level robustness; it is equally important to consider how image information that serves as input to the control process can be used so as to achieve robust and efficient control. In this paper we present an effort towards the development of robust visual techniques used to guide robots in various tasks. Given a task at hand, we argue that different levels of complexity should be considered; this also defines the choice of the visual technique used to provide the necessary feedback information. We concentrate on visual feedback estimation where we investigate both two- and three-dimensional techniques. In the former case, we are interested in providing coarse information about the object position/velocity in the image plane. In particular, a set of simple visual features (cues) is employed in an integrated framework where voting is used for fusing the responses from individual cues. The experimental evaluation shows the system performance for three different cases of camera-robot configurations most common for robotic systems. For cases where the robot is supposed to grasp the object, a two- dimensional position estimate is often not enough. Complete pose (position and orientation) of the object may be required. Therefore, we present a model-based system where a wire-frame model of the object is used to estimate its pose. Since a number of similar systems have been proposed in the literature, we concentrate on the particular part of the system usually neglected—automatic pose initialization. Finally, we show how a number of existing approaches can successfully be integrated in a system that is able to recognize and grasp fairly textured, everyday objects. One of the examples presented in the experimental section shows a mobile robot performing tasks in a real-word environment—a living room.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CAOHOU举报研友_ZeK0DL求助涉嫌违规
2秒前
2秒前
万能图书馆应助cheese采纳,获得10
3秒前
鲷哥发布了新的文献求助10
3秒前
3秒前
刘艺娜完成签到,获得积分10
3秒前
科研通AI5应助可爱的念寒采纳,获得10
3秒前
火星上山芙给火星上山芙的求助进行了留言
4秒前
axt发布了新的文献求助10
4秒前
科研通AI5应助11采纳,获得10
5秒前
boomboom完成签到,获得积分10
6秒前
SYLH应助不归的浪子采纳,获得10
7秒前
Owen应助落后晓蓝采纳,获得10
7秒前
7秒前
7秒前
7秒前
孤独的枫叶完成签到,获得积分10
8秒前
hhh发布了新的文献求助10
8秒前
长情绿凝完成签到,获得积分10
10秒前
Raunio完成签到,获得积分10
10秒前
Tomice发布了新的文献求助10
10秒前
JamesPei应助Cassie采纳,获得20
10秒前
Master_Ye完成签到,获得积分10
11秒前
12秒前
Gailnaur完成签到,获得积分10
12秒前
13秒前
luyang完成签到,获得积分10
13秒前
黎黎发布了新的文献求助10
14秒前
苹果安露完成签到,获得积分10
15秒前
17秒前
Agu完成签到,获得积分10
18秒前
慕青应助实验结果猴猴看采纳,获得10
18秒前
CooperLI发布了新的文献求助10
18秒前
rivalsdd完成签到,获得积分10
18秒前
18秒前
19秒前
李健应助DIKING采纳,获得10
20秒前
夜雨声烦关注了科研通微信公众号
20秒前
YUUNEEQUE完成签到,获得积分10
21秒前
科研通AI5应助77采纳,获得10
21秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deciphering Earth's History: the Practice of Stratigraphy 200
New Syntheses with Carbon Monoxide 200
Quanterion Automated Databook NPRD-2023 200
Interpretability and Explainability in AI Using Python 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3835233
求助须知:如何正确求助?哪些是违规求助? 3377688
关于积分的说明 10499920
捐赠科研通 3097264
什么是DOI,文献DOI怎么找? 1705630
邀请新用户注册赠送积分活动 820643
科研通“疑难数据库(出版商)”最低求助积分说明 772164