Case-Specific Random Forests

过度拟合 重采样 随机森林 计算机科学 对比度(视觉) 非参数统计 机器学习 人工智能 先验与后验 变量(数学) 统计 数据挖掘 数学 人工神经网络 数学分析 哲学 认识论
作者
Ruo Xu,Dan Nettleton,Daniel J. Nordman
出处
期刊:Journal of Computational and Graphical Statistics [Taylor & Francis]
卷期号:25 (1): 49-65 被引量:35
标识
DOI:10.1080/10618600.2014.983641
摘要

AbstractRandom forest (RF) methodology is a nonparametric methodology for prediction problems. A standard way to use RFs includes generating a global RF to predict all test cases of interest. In this article, we propose growing different RFs specific to different test cases, namely case-specific random forests (CSRFs). In contrast to the bagging procedure in the building of standard RFs, the CSRF algorithm takes weighted bootstrap resamples to create individual trees, where we assign large weights to the training cases in close proximity to the test case of interest a priori. Tuning methods are discussed to avoid overfitting issues. Both simulation and real data examples show that the weighted bootstrap resampling used in CSRF construction can improve predictions for specific cases. We also propose a new case-specific variable importance (CSVI) measure as a way to compare the relative predictor variable importance for predicting a particular case. It is possible that the idea of building a predictor case-specifically can be generalized in other areas.Key Words: Machine learningPredictionVariable importance ACKNOWLEDGMENTThis work was supported by National Science Foundation (NSF) Plant Genome Award 0922746 and by NSF DMS-1406747.Additional informationNotes on contributorsRuo XuRuo Xu is Analyst, Google Inc., 1600 Amphitheatre, Mountain View, CA 94043 (E-mail: xuruo.isu@gmail.com). Dan Nettleton is Professor, Department of Statistics, Iowa State University, Ames, IA 50011 (E-mail: dnett@iastate.edu). Daniel J. Nordman is Associate Professor, Department of Statistics, Iowa State University, Ames, IA 50011 (E-mail: dnordman@iastate.edu).Dan NettletonRuo Xu is Analyst, Google Inc., 1600 Amphitheatre, Mountain View, CA 94043 (E-mail: xuruo.isu@gmail.com). Dan Nettleton is Professor, Department of Statistics, Iowa State University, Ames, IA 50011 (E-mail: dnett@iastate.edu). Daniel J. Nordman is Associate Professor, Department of Statistics, Iowa State University, Ames, IA 50011 (E-mail: dnordman@iastate.edu).Daniel J. NordmanRuo Xu is Analyst, Google Inc., 1600 Amphitheatre, Mountain View, CA 94043 (E-mail: xuruo.isu@gmail.com). Dan Nettleton is Professor, Department of Statistics, Iowa State University, Ames, IA 50011 (E-mail: dnett@iastate.edu). Daniel J. Nordman is Associate Professor, Department of Statistics, Iowa State University, Ames, IA 50011 (E-mail: dnordman@iastate.edu).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助冰红茶采纳,获得10
刚刚
小元完成签到,获得积分10
刚刚
accept应助YP采纳,获得10
1秒前
无风海完成签到 ,获得积分10
1秒前
顾矜应助柔弱的信封采纳,获得10
2秒前
静心发布了新的文献求助10
2秒前
大奇葩完成签到,获得积分10
3秒前
背后归尘完成签到,获得积分10
4秒前
6秒前
7秒前
星辰大海应助vidi采纳,获得10
7秒前
xiaoxiao发布了新的文献求助10
8秒前
11秒前
穆小菜发布了新的文献求助20
11秒前
LinglongCai完成签到 ,获得积分10
12秒前
予秋发布了新的文献求助10
12秒前
Rr发布了新的文献求助10
12秒前
天真怜晴完成签到,获得积分10
16秒前
16秒前
打我呀完成签到,获得积分10
17秒前
dim发布了新的文献求助10
22秒前
23秒前
我不到啊完成签到,获得积分10
23秒前
blueskyzhi发布了新的文献求助10
23秒前
土豆丝发布了新的文献求助20
25秒前
调皮黑猫应助zzw54188采纳,获得30
26秒前
27秒前
糊涂生活糊涂过完成签到 ,获得积分10
27秒前
27秒前
vidi发布了新的文献求助10
29秒前
深情安青应助Lindsay采纳,获得10
32秒前
Mera发布了新的文献求助10
33秒前
33秒前
穆小菜完成签到,获得积分10
33秒前
昏睡的蟠桃应助duke采纳,获得80
34秒前
SuLi_ALL发布了新的文献求助10
36秒前
wanci应助科研通管家采纳,获得10
37秒前
冰魂应助科研通管家采纳,获得10
37秒前
37秒前
Jasper应助科研通管家采纳,获得10
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789438
求助须知:如何正确求助?哪些是违规求助? 3334371
关于积分的说明 10269940
捐赠科研通 3050864
什么是DOI,文献DOI怎么找? 1674189
邀请新用户注册赠送积分活动 802535
科研通“疑难数据库(出版商)”最低求助积分说明 760732