欧姆接触
钙钛矿(结构)
材料科学
掺杂剂
兴奋剂
光伏
混合太阳能电池
光伏系统
光电子学
能量转换效率
纳米技术
化学工程
聚合物太阳能电池
电气工程
图层(电子)
工程类
作者
Yi Hou,Xiaoyan Du,Simon Scheiner,David P. McMeekin,Zhiping Wang,Ning Li,Manuela S. Killian,Haiwei Chen,Moses Richter,Ievgen Levchuk,Nadine J. Schrenker,Erdmann Spiecker,Tobias Stubhan,Norman A. Luechinger,Andreas Hirsch,Patrik Schmuki,Hans‐Peter Steinrück,R. Fink,Marcus Halik,Henry J. Snaith
出处
期刊:Science
[American Association for the Advancement of Science]
日期:2017-11-09
卷期号:358 (6367): 1192-1197
被引量:628
标识
DOI:10.1126/science.aao5561
摘要
A major bottleneck delaying the further commercialization of thin-film solar cells based on hybrid organohalide lead perovskites is interface loss in state-of-the-art devices. We present a generic interface architecture that combines solution-processed, reliable, and cost-efficient hole-transporting materials without compromising efficiency, stability, or scalability of perovskite solar cells. Tantalum-doped tungsten oxide (Ta-WO x )/conjugated polymer multilayers offer a surprisingly small interface barrier and form quasi-ohmic contacts universally with various scalable conjugated polymers. In a simple device with regular planar architecture and a self-assembled monolayer, Ta-WO x -doped interface-based perovskite solar cells achieve maximum efficiencies of 21.2% and offer more than 1000 hours of light stability. By eliminating additional ionic dopants, these findings open up the entire class of organics as scalable hole-transporting materials for perovskite solar cells.
科研通智能强力驱动
Strongly Powered by AbleSci AI