Whose Post Is It? Predicting E-cigarette Brand from Social Media Posts

社会化媒体 广告 品牌形象 心理学 业务 计算机科学 万维网
作者
Elizabeth A. Vandewater,Stephanie L. Clendennen,Emily T. Hébert,Galya Bigman,Christian Jackson,Anna V. Wilkinson,Cheryl L. Perry
出处
期刊:Tobacco regulatory science [Tobacco Regulatory Science Group]
卷期号:4 (2): 30-43 被引量:22
标识
DOI:10.18001/trs.4.2.3
摘要

E-cigarette advertisers know that 76% of youth use social media, yet little is known about the nature of e-cigarette advertising on social media most favored by youth. We utilized text-mining to characterize e-cigarette advertising and marketing messages from image-focused social media brand sites, and to construct and test an algorithm for predicting brand from brand-generated social media posts.Data comprised 5022 unique posts accompanied by an image from Facebook, Instagram or Pinterest e-cigarette brand pages for Blu, Logic, Metro, and NJOY from February 2012 to April 2015. Text-tokenization was used to quantify text for use as predictors in analyses.Blu had the largest social media presence (65%), followed by Logic (16%), NJOY (12%) and Metro (7%). Blu's average post length was significantly shorter than all other brands. Words most commonly used in posts differed by brand. Regression analyses successfully differentiated Blu and NJOY brands from other brands.Analyses revealed e-cigarette brands used different types of messages to appeal to social media users. Whereas words used by Blu and NJOY sold a "lifestyle," words used by Logic and Metro relied on device and product identification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
雨晓音发布了新的文献求助200
刚刚
席潮发布了新的文献求助10
3秒前
Kyt2024应助小松鼠采纳,获得50
4秒前
dongdong完成签到 ,获得积分10
4秒前
脑洞疼应助曾梦采纳,获得10
5秒前
甜甜的振家完成签到,获得积分10
5秒前
5秒前
zhaoli完成签到 ,获得积分10
6秒前
怕孤单的灯泡完成签到,获得积分10
7秒前
7秒前
8秒前
8秒前
华仔应助科研通管家采纳,获得10
8秒前
bc应助科研通管家采纳,获得20
9秒前
隐形曼青应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
9秒前
Auston_zhong应助张达采纳,获得10
10秒前
Yangy_发布了新的文献求助10
12秒前
BUBBLE发布了新的文献求助10
13秒前
14秒前
搜集达人应助sijia_yang采纳,获得10
14秒前
jingjing发布了新的文献求助10
15秒前
15秒前
佟开开完成签到,获得积分10
16秒前
海天使完成签到 ,获得积分10
16秒前
LH完成签到,获得积分10
18秒前
充电宝应助十余里采纳,获得10
18秒前
五个半柠檬关注了科研通微信公众号
18秒前
18秒前
泡泡汽水发布了新的文献求助10
19秒前
123完成签到,获得积分10
19秒前
19秒前
祝星发布了新的文献求助10
20秒前
20秒前
Nicole完成签到 ,获得积分10
21秒前
CipherSage应助xh采纳,获得10
21秒前
明理的妙柏完成签到,获得积分10
22秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
武汉作战 石川达三 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Understanding Interaction in the Second Language Classroom Context 300
Fractional flow reserve- and intravascular ultrasound-guided strategies for intermediate coronary stenosis and low lesion complexity in patients with or without diabetes: a post hoc analysis of the randomised FLAVOUR trial 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3811218
求助须知:如何正确求助?哪些是违规求助? 3355594
关于积分的说明 10376790
捐赠科研通 3072455
什么是DOI,文献DOI怎么找? 1687496
邀请新用户注册赠送积分活动 811671
科研通“疑难数据库(出版商)”最低求助积分说明 766728