Progress of radiation effects of silicon photonics devices

光子学 光电子学 材料科学 硅光子学 辐射硬化 辐射 光学 物理
作者
Yue Zhou,Zhiyuan Hu,Da-Wei Bi,Aimin Wu
出处
期刊:Chinese Physics [Science Press]
卷期号:68 (20): 204206-204206 被引量:4
标识
DOI:10.7498/aps.68.20190543
摘要

Silicon photonics is a fundamental technology, which has great potential applications in optical interconnection for telecom, datacom, and high performance computers, as well as in bio-photonics. Currently considered are the photonics integrated circuits that are able to work in harsh environments such as high energy equipment and future space systems including satellites, space stations and spacecraft. The understanding of the radiation effects of the photonics devices is critical for fabricating radiation hardened photonic integrate chips and maintaining the performance of the devices and the systems. In this paper, the recent progress of the radiation effects of silicon photonic components is summarized. The effects of the high energy particles that possibly degrade the performance of the device are explained, and the response of the passive and active device under radiation are reviewed comprehensively, including waveguides, ring resonators, modulators, detectors, lasers and optical fibers and so on. For passive devices, radiation-induced effects include accelerated-oxidation of the structures, radiation-generated lattice defects, and amorphous densification or compaction in the optical materials. The effective refractive index of the passive device may change consequently, leading the working frequency to shift, the optical confinement to decrease, and the optical power to leak, which accounts for the extra loss or other performance degradation behaviors. For photodetectors and lasers, radiation-induced displacement damage will be dominant. The induced point defects localized in the silicon layer bring about deep level in the forbidden band, acting as generation-recombination centers or trap centers of tunneling effect, which will compensate for either donor or acceptor levels, degrading the response of these optoelectronic device significantly. The plasma dispersion effect is the mainstream approach to building the silicon electro-optic modulators, which will suffer ionization damage in the high energy particle environment, because the interface-trapped hole caused by ionizing radiation reduces the carrier concentration in the depletion region and even induces the pinch-off of the p-doped side of the modulator, which may result in device failure. To improve the radiation hardness of the silicon photonic device, the passivation of the surface, optimization of the waveguide shape, and the choice of appropriate thickness of the buried oxide layer are possible solutions, and more effective approaches are still to be developed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
852应助怕黑的老九采纳,获得10
2秒前
yqcj455发布了新的文献求助10
2秒前
3秒前
清晨关注了科研通微信公众号
3秒前
puyu发布了新的文献求助10
6秒前
thydf1完成签到,获得积分10
7秒前
猪猪hero发布了新的文献求助10
8秒前
8秒前
9秒前
Zeal完成签到,获得积分10
12秒前
12秒前
Jason Z发布了新的文献求助10
13秒前
14秒前
14秒前
量子星尘发布了新的文献求助10
15秒前
xxxxx发布了新的文献求助10
15秒前
青笺完成签到,获得积分10
16秒前
16秒前
pofeng发布了新的文献求助10
16秒前
17秒前
星辰大海应助null采纳,获得10
18秒前
33A2D17发布了新的文献求助10
18秒前
ha发布了新的文献求助10
20秒前
23秒前
热心晓丝发布了新的文献求助20
24秒前
24秒前
25秒前
null重新开启了BINGBING文献应助
26秒前
传奇3应助秃头小宝贝采纳,获得10
28秒前
Jason Z完成签到,获得积分10
28秒前
32秒前
34秒前
kuroo完成签到,获得积分10
35秒前
35秒前
无心的戒指关注了科研通微信公众号
35秒前
35秒前
量子星尘发布了新的文献求助10
36秒前
xzleee完成签到 ,获得积分10
37秒前
zebra完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Global Immunoassay Market: Trends, Technologies, and Growth Opportunities, 2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4276896
求助须知:如何正确求助?哪些是违规求助? 3805688
关于积分的说明 11924301
捐赠科研通 3452416
什么是DOI,文献DOI怎么找? 1893445
邀请新用户注册赠送积分活动 943612
科研通“疑难数据库(出版商)”最低求助积分说明 847470