Preoperative ultrasound-based radiomics score can improve the accuracy of the Memorial Sloan Kettering Cancer Center nomogram for predicting sentinel lymph node metastasis in breast cancer

医学 列线图 接收机工作特性 乳腺癌 前哨淋巴结 放射科 置信区间 转移 癌症 淋巴结 内科学 核医学 肿瘤科
作者
Hailing Zha,Min Zong,Xinpei Liu,Jia-Zhen Pan,Hui Wang,Haiyan Gong,Tiansong Xia,Xiaoan Liu,Cuiying Li
出处
期刊:European Journal of Radiology [Elsevier]
卷期号:135: 109512-109512 被引量:40
标识
DOI:10.1016/j.ejrad.2020.109512
摘要

Purpose To develop a combined nomogram by incorporating the Memorial Sloan Kettering Cancer Center (MSKCC) nomogram and ultrasound (US)-based radiomics score (Radscore) for predicting sentinel lymph node (SLN) metastasis in invasive breast cancer. Materials and Methods This retrospective study was approved by the ethics committee of our institution, and written informed consent was waived. A total of 452 patients with invasive breast cancer who received SLN Biopsy in a single center were included between January 2016 and December 2019. The patients were divided into a training set (n = 318) and a validation set (n = 134). A total of 1216 features were extracted from the regions of interest (ROIs) of the tumors on conventional ultrasound. The maximum relevance minimum redundancy (mRMR) and the least absolute shrinkage and selection operator (LASSO) algorithm were used to build the Radscore. Afterward, the diagnostic performance was assessed and validated. Comparison of receiver operating characteristic (ROC) curves and decision curve analysis (DCA) were performed to evaluate the incremental value of the combined model. Results Obtained from 18 features, the Radscore indicated a favorable discriminatory capability in the training set with an area under the curve (AUC) of 0.834, whereas a value of 0.770 was observed in the validation set. The AUC of the combined model was 0.901 (95 % confidence interval (95 % CI): 0.865−0.938) in the training set and 0.833 (95 % CI: 0.788−0.878) in the validation set. Both of them were superior to MSKCC or imaging Radscore alone (P < 0.05). DCA demonstrated that the combined model was superior to the others in terms of clinical practicability. Conclusion Preoperative US-based Radscore can improve the accuracy of clinical MSKCC nomogram for SLN metastasis prediction in breast cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
圆头圆脑圆肚皮应助csh_uyu采纳,获得10
刚刚
赘婿应助miaomiao采纳,获得10
刚刚
Twonej应助阔达一寡采纳,获得30
刚刚
青柠发布了新的文献求助10
刚刚
刚刚
馍夹菜完成签到,获得积分10
1秒前
缓慢不悔发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
慕青应助恩恩天天开心采纳,获得10
1秒前
酷波er应助牧野牧采纳,获得10
2秒前
Akim应助舒心的妙海采纳,获得10
2秒前
小龚完成签到,获得积分10
2秒前
饶天源完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
Twonej应助guo采纳,获得50
3秒前
善学以致用应助艳淑采纳,获得10
3秒前
复杂的雪糕完成签到,获得积分10
4秒前
4秒前
张浩敏发布了新的文献求助10
4秒前
852应助无私的书翠采纳,获得10
4秒前
4秒前
4秒前
5秒前
5秒前
大飞完成签到 ,获得积分10
5秒前
丘比特应助shuo采纳,获得10
6秒前
heiye发布了新的文献求助10
6秒前
昼夜本色发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
7秒前
杏仁饼干发布了新的文献求助10
7秒前
bzlish完成签到,获得积分10
8秒前
英姑应助清爽小白菜采纳,获得10
8秒前
bkagyin应助仁仁仁采纳,获得20
8秒前
seedcode发布了新的文献求助10
9秒前
大宝君应助MMP采纳,获得30
9秒前
4521发布了新的文献求助30
10秒前
尊敬彩虹发布了新的文献求助10
10秒前
帕尼灬尼发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5719182
求助须知:如何正确求助?哪些是违规求助? 5255402
关于积分的说明 15287996
捐赠科研通 4869073
什么是DOI,文献DOI怎么找? 2614641
邀请新用户注册赠送积分活动 1564561
关于科研通互助平台的介绍 1521851