Interfaces in Solid Electrolyte Interphase: Implications for Lithium-Ion Batteries

电解质 离子 锂(药物) 材料科学 相间 金属锂 电极 化学 物理化学 有机化学 内科学 遗传学 医学 生物
作者
Zeeshan Ahmad,Victor Venturi,Hasnain Hafiz,Venkatasubramanian Viswanathan
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
卷期号:125 (21): 11301-11309 被引量:47
标识
DOI:10.1021/acs.jpcc.1c00867
摘要

The existence of passivating layers at the interfaces is a major factor enabling modern lithium-ion (Li-ion) batteries. Their properties determine the cycle life, performance, and safety of batteries. A special case is the solid electrolyte interphase (SEI), a heterogeneous multi-component film formed due to the instability and subsequent decomposition of the electrolyte at the surface of the anode. The SEI acts as a passivating layer that hinders further electrolyte disintegration, which is detrimental to the Coulombic efficiency. In this work, we use first-principles simulations to investigate the kinetic and electronic properties of the interface between lithium fluoride (LiF) and lithium carbonate (Li$_2$CO$_3$), two common SEI components present in Li-ion batteries with organic liquid electrolytes. We find a coherent interface between these components that restricts the strain in each of them to below 3%. We find that the interface causes a large increase in the formation energy of the Frenkel defect, generating Li vacancies in LiF and Li interstitials in Li$_2$CO$_3$ responsible for transport. On the other hand, the Li interstitial hopping barrier is reduced from $0.3$ eV in bulk Li$_2$CO$_3$ to $0.10$ or $0.22$ eV in the interfacial structure considered, demonstrating the favorable role of the interface. Controlling these two effects in a heterogeneous SEI is crucial for maintaining fast ion transport in the SEI. We further perform Car-Parrinello molecular dynamics simulations to explore Li ion conduction in our interfacial structure, which reveal an enhanced Li ion diffusion in the vicinity of the interface. Understanding the interfacial properties of the multiphase SEI represents an important frontier to enable next-generation batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王jj发布了新的文献求助10
刚刚
盲点完成签到,获得积分10
1秒前
爱听歌的雁开完成签到 ,获得积分10
2秒前
2秒前
3秒前
4秒前
川普完成签到,获得积分20
4秒前
5秒前
5秒前
zz完成签到,获得积分20
5秒前
6秒前
6秒前
7秒前
7秒前
Zoe_Zhang发布了新的文献求助10
7秒前
川普发布了新的文献求助10
8秒前
LAVINE发布了新的文献求助10
8秒前
8秒前
8秒前
Ava应助22采纳,获得10
8秒前
七木发布了新的文献求助10
9秒前
vuluv发布了新的文献求助10
9秒前
10秒前
ccc完成签到 ,获得积分10
10秒前
11秒前
ahhhh发布了新的文献求助10
12秒前
12秒前
Hancen发布了新的文献求助10
12秒前
morena发布了新的文献求助10
12秒前
王三渡发布了新的文献求助10
12秒前
辛勤云朵发布了新的文献求助10
13秒前
梦若浮生发布了新的文献求助10
13秒前
13秒前
落后醉易发布了新的文献求助10
14秒前
15秒前
16秒前
小蜗发布了新的文献求助30
16秒前
核桃应助ahhhh采纳,获得10
16秒前
Orange应助小白采纳,获得10
17秒前
怕黑三毒发布了新的文献求助10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5662838
求助须知:如何正确求助?哪些是违规求助? 4845174
关于积分的说明 15101436
捐赠科研通 4821204
什么是DOI,文献DOI怎么找? 2580624
邀请新用户注册赠送积分活动 1534739
关于科研通互助平台的介绍 1493202