Machine learning assisted materials design and discovery for rechargeable batteries

电池(电) 机器学习 人工智能 过程(计算) 特征选择 财产(哲学) 组分(热力学) 计算机科学 功率(物理) 量子力学 热力学 认识论 操作系统 物理 哲学
作者
Yue Liu,Biru Guo,Xinxin Zou,Yajie Li,Siqi Shi
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:31: 434-450 被引量:317
标识
DOI:10.1016/j.ensm.2020.06.033
摘要

Machine learning plays an important role in accelerating the discovery and design process for novel electrochemical energy storage materials. This review aims to provide the state-of-the-art and prospects of machine learning for the design of rechargeable battery materials. After illustrating the key concepts of machine learning and basic procedures for applying machine learning in rechargeable battery materials science, we focus on how to obtain the most important features from the specific physical, chemical and/or other properties of material by using wrapper feature selection method, embedded feature selection method, and the combination of these two methods. And then, the applications of machine learning in rechargeable battery materials design and discovery are reviewed, including the property prediction for liquid electrolytes, solid electrolytes, electrode materials, and the discovery of novel rechargeable battery materials through component prediction and structure prediction. More importantly, we discuss the key challenges related to machine learning in rechargeable battery materials science, including the contradiction between high dimension and small sample, the conflict between the complexity and accuracy of machine learning models, and the inconsistency between learning results and domain expert knowledge. In response to these challenges, we propose possible countermeasures and forecast potential directions of future research. This review is expected to shed light on machine learning in rechargeable battery materials design and property optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
路人甲完成签到,获得积分10
1秒前
1秒前
1秒前
2秒前
FashionBoy应助魏映霞采纳,获得10
2秒前
组织发布了新的文献求助10
2秒前
2秒前
3秒前
工大机械完成签到,获得积分10
4秒前
pluto应助WTaMi采纳,获得10
4秒前
4秒前
汉堡包应助yeeryan采纳,获得10
5秒前
5秒前
xiaopei发布了新的文献求助10
5秒前
共享精神应助月月采纳,获得10
6秒前
科目三应助DrWang采纳,获得10
6秒前
6秒前
111发布了新的文献求助10
6秒前
6秒前
7秒前
开心饼干关注了科研通微信公众号
7秒前
和谐的阁发布了新的文献求助10
7秒前
潇洒一曲完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
zhaoqing完成签到,获得积分10
9秒前
高金龙完成签到 ,获得积分10
9秒前
今后应助111采纳,获得10
9秒前
酷波er应助家伟采纳,获得10
10秒前
PP发布了新的文献求助10
10秒前
bea发布了新的文献求助10
10秒前
Ava应助xiaopei采纳,获得10
11秒前
毕双洲完成签到,获得积分10
12秒前
今后应助Possession采纳,获得10
13秒前
飘萍过客完成签到,获得积分10
13秒前
14秒前
14秒前
搜集达人应助赵宇宙采纳,获得10
15秒前
个性的黎云完成签到,获得积分10
16秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956369
求助须知:如何正确求助?哪些是违规求助? 3502503
关于积分的说明 11108341
捐赠科研通 3233197
什么是DOI,文献DOI怎么找? 1787199
邀请新用户注册赠送积分活动 870528
科研通“疑难数据库(出版商)”最低求助积分说明 802105