Machine learning assisted materials design and discovery for rechargeable batteries

电池(电) 机器学习 人工智能 过程(计算) 特征选择 财产(哲学) 组分(热力学) 计算机科学 功率(物理) 量子力学 热力学 认识论 操作系统 物理 哲学
作者
Yue Liu,Biru Guo,Xinxin Zou,Yajie Li,Siqi Shi
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:31: 434-450 被引量:361
标识
DOI:10.1016/j.ensm.2020.06.033
摘要

Machine learning plays an important role in accelerating the discovery and design process for novel electrochemical energy storage materials. This review aims to provide the state-of-the-art and prospects of machine learning for the design of rechargeable battery materials. After illustrating the key concepts of machine learning and basic procedures for applying machine learning in rechargeable battery materials science, we focus on how to obtain the most important features from the specific physical, chemical and/or other properties of material by using wrapper feature selection method, embedded feature selection method, and the combination of these two methods. And then, the applications of machine learning in rechargeable battery materials design and discovery are reviewed, including the property prediction for liquid electrolytes, solid electrolytes, electrode materials, and the discovery of novel rechargeable battery materials through component prediction and structure prediction. More importantly, we discuss the key challenges related to machine learning in rechargeable battery materials science, including the contradiction between high dimension and small sample, the conflict between the complexity and accuracy of machine learning models, and the inconsistency between learning results and domain expert knowledge. In response to these challenges, we propose possible countermeasures and forecast potential directions of future research. This review is expected to shed light on machine learning in rechargeable battery materials design and property optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Genius完成签到,获得积分10
刚刚
Mystic完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
jessicazhong发布了新的文献求助10
2秒前
所所应助青笺采纳,获得10
2秒前
simple发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
5秒前
ashao发布了新的文献求助10
5秒前
canghong发布了新的文献求助10
5秒前
啥东西完成签到,获得积分10
5秒前
Mystic发布了新的文献求助10
6秒前
李爱国应助33A2D17采纳,获得10
6秒前
坐标完成签到,获得积分10
7秒前
crazy完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
清晨发布了新的文献求助10
9秒前
向阳葵发布了新的文献求助10
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
WilsonT发布了新的文献求助10
14秒前
14秒前
赘婿应助33A2D17采纳,获得10
15秒前
ashao完成签到,获得积分10
15秒前
16秒前
zzl发布了新的文献求助10
17秒前
科研通AI5应助猪猪hero采纳,获得10
19秒前
细腻荔枝完成签到,获得积分10
19秒前
19秒前
赵鹏完成签到,获得积分10
20秒前
雨田发布了新的文献求助10
20秒前
168完成签到,获得积分10
21秒前
细腻荔枝发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Organic Chemistry 1500
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Introducing Sociology Using the Stuff of Everyday Life 400
Conjugated Polymers: Synthesis & Design 400
Picture Books with Same-sex Parented Families: Unintentional Censorship 380
Global Immunoassay Market: Trends, Technologies, and Growth Opportunities, 2025 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4276896
求助须知:如何正确求助?哪些是违规求助? 3805688
关于积分的说明 11924301
捐赠科研通 3452416
什么是DOI,文献DOI怎么找? 1893445
邀请新用户注册赠送积分活动 943612
科研通“疑难数据库(出版商)”最低求助积分说明 847470