Machine learning assisted materials design and discovery for rechargeable batteries

电池(电) 机器学习 人工智能 过程(计算) 特征选择 财产(哲学) 组分(热力学) 计算机科学 功率(物理) 量子力学 热力学 认识论 操作系统 物理 哲学
作者
Yue Liu,Biru Guo,Xinxin Zou,Yajie Li,Siqi Shi
出处
期刊:Energy Storage Materials [Elsevier BV]
卷期号:31: 434-450 被引量:317
标识
DOI:10.1016/j.ensm.2020.06.033
摘要

Machine learning plays an important role in accelerating the discovery and design process for novel electrochemical energy storage materials. This review aims to provide the state-of-the-art and prospects of machine learning for the design of rechargeable battery materials. After illustrating the key concepts of machine learning and basic procedures for applying machine learning in rechargeable battery materials science, we focus on how to obtain the most important features from the specific physical, chemical and/or other properties of material by using wrapper feature selection method, embedded feature selection method, and the combination of these two methods. And then, the applications of machine learning in rechargeable battery materials design and discovery are reviewed, including the property prediction for liquid electrolytes, solid electrolytes, electrode materials, and the discovery of novel rechargeable battery materials through component prediction and structure prediction. More importantly, we discuss the key challenges related to machine learning in rechargeable battery materials science, including the contradiction between high dimension and small sample, the conflict between the complexity and accuracy of machine learning models, and the inconsistency between learning results and domain expert knowledge. In response to these challenges, we propose possible countermeasures and forecast potential directions of future research. This review is expected to shed light on machine learning in rechargeable battery materials design and property optimization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7Hours发布了新的文献求助10
刚刚
沉静立辉完成签到,获得积分10
刚刚
安谢完成签到,获得积分10
1秒前
炸炸呦发布了新的文献求助30
1秒前
mangata完成签到,获得积分10
1秒前
野性的曼香完成签到 ,获得积分10
2秒前
3秒前
4秒前
hs完成签到,获得积分10
4秒前
4秒前
18969431868完成签到,获得积分10
4秒前
Orange应助小马驹采纳,获得10
5秒前
创新发布了新的文献求助10
5秒前
斯文的一刀完成签到,获得积分10
5秒前
武沛凝发布了新的文献求助10
5秒前
慕青应助做实验的猹采纳,获得10
6秒前
6秒前
黑魔仙小月完成签到,获得积分10
6秒前
李健的小迷弟应助赵赵赵采纳,获得10
7秒前
华仔应助lili采纳,获得10
7秒前
7秒前
pzxixixi发布了新的文献求助10
7秒前
123完成签到,获得积分10
7秒前
7秒前
8秒前
lancer发布了新的文献求助10
8秒前
kirito完成签到,获得积分10
8秒前
9秒前
choumaoo完成签到,获得积分10
9秒前
炸炸呦完成签到,获得积分10
10秒前
研友_RLNDkZ完成签到,获得积分10
10秒前
东方耀发布了新的文献求助10
10秒前
33猫完成签到 ,获得积分10
10秒前
柯米克发布了新的文献求助10
10秒前
10秒前
漂亮寻云发布了新的文献求助10
11秒前
123发布了新的文献求助10
11秒前
11秒前
11秒前
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785203
求助须知:如何正确求助?哪些是违规求助? 3330716
关于积分的说明 10247928
捐赠科研通 3046146
什么是DOI,文献DOI怎么找? 1671860
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759798