Power-Law Distributions in Empirical Data

幂律 拟合优度 航程(航空) 法学 统计的 帕累托分布 计量经济学 数学 功率(物理) 统计物理学 统计 计算机科学 物理 复合材料 量子力学 材料科学 政治学
作者
Aaron Clauset,Cosma Rohilla Shalizi,M. E. J. Newman
出处
期刊:Siam Review [Society for Industrial and Applied Mathematics]
卷期号:51 (4): 661-703 被引量:4710
标识
DOI:10.1137/070710111
摘要

Power-law distributions occur in many situations of scientific interest and have significant consequences for our understanding of natural and man-made phenomena. Unfortunately, the detection and characterization of power laws is complicated by the large fluctuations that occur in the tail of the distribution—the part of the distribution representing large but rare events—and by the difficulty of identifying the range over which power-law behavior holds. Commonly used methods for analyzing power-law data, such as least-squares fitting, can produce substantially inaccurate estimates of parameters for power-law distributions, and even in cases where such methods return accurate answers they are still unsatisfactory because they give no indication of whether the data obey a power law at all. Here we present a principled statistical framework for discerning and quantifying power-law behavior in empirical data. Our approach combines maximum-likelihood fitting methods with goodness-of-fit tests based on the Kolmogorov–Smirnov (KS) statistic and likelihood ratios. We evaluate the effectiveness of the approach with tests on synthetic data and give critical comparisons to previous approaches. We also apply the proposed methods to twenty-four real-world data sets from a range of different disciplines, each of which has been conjectured to follow a power-law distribution. In some cases we find these conjectures to be consistent with the data, while in others the power law is ruled out.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
共享精神应助Darknewnew采纳,获得10
刚刚
高高哑铃完成签到,获得积分10
1秒前
1秒前
今后应助嘻哈采纳,获得10
1秒前
啾啾栖鸟过完成签到,获得积分10
2秒前
2秒前
fuxiao发布了新的文献求助10
2秒前
3秒前
3秒前
孟冬发布了新的文献求助10
3秒前
楷哆哆完成签到,获得积分10
5秒前
6秒前
bofu发布了新的文献求助10
7秒前
8秒前
8秒前
lk发布了新的文献求助10
8秒前
wang发布了新的文献求助10
8秒前
香蕉觅云应助李知恩采纳,获得10
8秒前
ELL发布了新的文献求助10
8秒前
哈哈哈哈发布了新的文献求助10
9秒前
10秒前
MeSs发布了新的文献求助10
10秒前
尊敬的惠发布了新的文献求助10
11秒前
12秒前
12秒前
慕青应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
Akim应助科研通管家采纳,获得30
12秒前
13秒前
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
13秒前
小二郎应助科研通管家采纳,获得10
13秒前
OnionJJ应助科研通管家采纳,获得10
13秒前
lsclsclsc发布了新的文献求助10
14秒前
dudu发布了新的文献求助10
15秒前
shilong.yang发布了新的文献求助30
16秒前
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818655
求助须知:如何正确求助?哪些是违规求助? 3361728
关于积分的说明 10413958
捐赠科研通 3079935
什么是DOI,文献DOI怎么找? 1693704
邀请新用户注册赠送积分活动 814550
科研通“疑难数据库(出版商)”最低求助积分说明 768248