Deep learning-based survival prediction for multiple cancer types using histopathology images

组织病理学 深度学习 计算机科学 人工智能 模式识别(心理学) 病理 医学
作者
Ellery Wulczyn,David F. Steiner,Zhaoyang Xu,Apaar Sadhwani,Hongwu Wang,Isabelle Flament-Auvigne,Craig H. Mermel,Po-Hsuan Cameron Chen,Yun Liu,Martin C. Stumpe
出处
期刊:PLOS ONE [Public Library of Science]
卷期号:15 (6): e0233678-e0233678 被引量:208
标识
DOI:10.1371/journal.pone.0233678
摘要

Prognostic information at diagnosis has important implications for cancer treatment and monitoring. Although cancer staging, histopathological assessment, molecular features, and clinical variables can provide useful prognostic insights, improving risk stratification remains an active research area. We developed a deep learning system (DLS) to predict disease specific survival across 10 cancer types from The Cancer Genome Atlas (TCGA). We used a weakly-supervised approach without pixel-level annotations, and tested three different survival loss functions. The DLS was developed using 9,086 slides from 3,664 cases and evaluated using 3,009 slides from 1,216 cases. In multivariable Cox regression analysis of the combined cohort including all 10 cancers, the DLS was significantly associated with disease specific survival (hazard ratio of 1.58, 95% CI 1.28-1.70, p<0.0001) after adjusting for cancer type, stage, age, and sex. In a per-cancer adjusted subanalysis, the DLS remained a significant predictor of survival in 5 of 10 cancer types. Compared to a baseline model including stage, age, and sex, the c-index of the model demonstrated an absolute 3.7% improvement (95% CI 1.0-6.5) in the combined cohort. Additionally, our models stratified patients within individual cancer stages, particularly stage II (p=0.025) and stage III (p<0.001). By developing and evaluating prognostic models across multiple cancer types, this work represents one of the most comprehensive studies exploring the direct prediction of clinical outcomes using deep learning and histopathology images. Our analysis demonstrates the potential for this approach to provide prognostic information in multiple cancer types, and even within specific pathologic stages. However, given the relatively small number of clinical events, we observed wide confidence intervals, suggesting that future work will benefit from larger datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
甜橙发布了新的文献求助10
1秒前
2秒前
打个喷嚏发布了新的文献求助10
2秒前
西早07完成签到,获得积分0
4秒前
秋风暖暖发布了新的文献求助30
4秒前
5秒前
xiaoyu发布了新的文献求助10
5秒前
醋醋完成签到,获得积分10
5秒前
5秒前
迷路的寄真完成签到,获得积分10
6秒前
QQQ发布了新的文献求助10
6秒前
demian发布了新的文献求助10
6秒前
6秒前
fsrm完成签到,获得积分10
7秒前
香蕉觅云应助俊逸的卿采纳,获得10
7秒前
7秒前
TheGala发布了新的文献求助10
8秒前
小二郎应助丶丶采纳,获得10
8秒前
ziyou完成签到,获得积分10
8秒前
9秒前
鲤鱼灵阳完成签到,获得积分10
9秒前
9秒前
user123完成签到,获得积分10
10秒前
青羽落霞完成签到 ,获得积分10
10秒前
鸭鸭完成签到,获得积分10
10秒前
柒_l完成签到,获得积分10
11秒前
wushuyue发布了新的文献求助10
11秒前
辛紫璇发布了新的文献求助50
11秒前
李沛书完成签到,获得积分10
11秒前
WWWhy发布了新的文献求助30
12秒前
Richardisme完成签到,获得积分10
13秒前
13秒前
hanxuepenyun发布了新的文献求助10
14秒前
Dravia应助YYQ采纳,获得10
14秒前
14秒前
混吃等死研究生完成签到,获得积分10
14秒前
15秒前
Zosty完成签到,获得积分10
15秒前
kkk完成签到,获得积分20
15秒前
胡晓平完成签到,获得积分10
15秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
植物基因组学(第二版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4092983
求助须知:如何正确求助?哪些是违规求助? 3631757
关于积分的说明 11510740
捐赠科研通 3342593
什么是DOI,文献DOI怎么找? 1837216
邀请新用户注册赠送积分活动 904970
科研通“疑难数据库(出版商)”最低求助积分说明 822743