朗之万动力
数学
上下界
欧米茄
布朗运动
随机算法
劈形算符
布朗动力学
朗之万方程
订单(交换)
组合数学
算法
统计物理学
物理
数学分析
量子力学
统计
经济
财务
作者
Yu Cao,Jianfeng Lu,Lihan Wang
标识
DOI:10.4310/cms.2021.v19.n7.a4
摘要
We establish an information complexity lower bound of randomized algorithms for simulating underdamped Langevin dynamics.More specifically, we prove that the worst L 2 strong error is of order Ω( √ d N -3/2 ), for solving a family of d-dimensional underdamped Langevin dynamics, by any randomized algorithm with only N queries to ∇U , the driving Brownian motion and its weighted integration, respectively.The lower bound we establish matches the upper bound for the randomized midpoint method recently proposed by Shen and Lee [NIPS 2019], in terms of both parameters N and d.
科研通智能强力驱动
Strongly Powered by AbleSci AI