Magnetic resonance parameter mapping using model‐guided self‐supervised deep learning

欠采样 计算机科学 人工智能 深度学习 迭代重建 噪音(视频) 基本事实 压缩传感 模式识别(心理学) 监督学习 先验与后验 人工神经网络 计算机视觉 图像(数学) 认识论 哲学
作者
Fang Liu,Richard Kijowski,Georges El Fakhri,Li Feng
出处
期刊:Magnetic Resonance in Medicine [Wiley]
卷期号:85 (6): 3211-3226 被引量:69
标识
DOI:10.1002/mrm.28659
摘要

To develop a model-guided self-supervised deep learning MRI reconstruction framework called reference-free latent map extraction (RELAX) for rapid quantitative MR parameter mapping.Two physical models are incorporated for network training in RELAX, including the inherent MR imaging model and a quantitative model that is used to fit parameters in quantitative MRI. By enforcing these physical model constraints, RELAX eliminates the need for full sampled reference data sets that are required in standard supervised learning. Meanwhile, RELAX also enables direct reconstruction of corresponding MR parameter maps from undersampled k-space. Generic sparsity constraints used in conventional iterative reconstruction, such as the total variation constraint, can be additionally included in the RELAX framework to improve reconstruction quality. The performance of RELAX was tested for accelerated T1 and T2 mapping in both simulated and actually acquired MRI data sets and was compared with supervised learning and conventional constrained reconstruction for suppressing noise and/or undersampling-induced artifacts.In the simulated data sets, RELAX generated good T1 /T2 maps in the presence of noise and/or undersampling artifacts, comparable to artifact/noise-free ground truth. The inclusion of a spatial total variation constraint helps improve image quality. For the in vivo T1 /T2 mapping data sets, RELAX achieved superior reconstruction quality compared with conventional iterative reconstruction, and similar reconstruction performance to supervised deep learning reconstruction.This work has demonstrated the initial feasibility of rapid quantitative MR parameter mapping based on self-supervised deep learning. The RELAX framework may also be further extended to other quantitative MRI applications by incorporating corresponding quantitative imaging models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小許要看文献完成签到,获得积分10
刚刚
小豆芽博士完成签到,获得积分10
2秒前
5秒前
科研通AI5应助djbj2022采纳,获得80
13秒前
lilylwy完成签到 ,获得积分0
13秒前
14秒前
笨笨忘幽完成签到,获得积分10
15秒前
感性的神级完成签到,获得积分10
15秒前
15秒前
songzj发布了新的文献求助10
15秒前
18秒前
陈默完成签到 ,获得积分10
18秒前
激昂的南烟完成签到 ,获得积分10
21秒前
21秒前
summer完成签到,获得积分10
21秒前
djbj2022发布了新的文献求助80
26秒前
zeannezg完成签到 ,获得积分10
34秒前
xz完成签到 ,获得积分10
34秒前
崩溃完成签到,获得积分10
35秒前
bono完成签到 ,获得积分10
41秒前
蛋卷完成签到 ,获得积分10
49秒前
50秒前
songzj发布了新的文献求助30
50秒前
阿童木完成签到,获得积分20
50秒前
54秒前
maun222发布了新的文献求助30
1分钟前
CNAxiaozhu7完成签到,获得积分10
1分钟前
maun222完成签到,获得积分10
1分钟前
绵绵球完成签到 ,获得积分0
1分钟前
李健的小迷弟应助tuyfytjt采纳,获得10
1分钟前
乘风完成签到,获得积分10
1分钟前
1分钟前
Tong完成签到,获得积分0
1分钟前
Eri_SCI完成签到 ,获得积分10
1分钟前
CLTTT完成签到,获得积分10
1分钟前
tuyfytjt发布了新的文献求助10
1分钟前
段誉完成签到 ,获得积分10
1分钟前
小yi又困啦完成签到 ,获得积分10
1分钟前
默默的棒棒糖完成签到 ,获得积分10
1分钟前
失眠的向日葵完成签到 ,获得积分10
1分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788357
求助须知:如何正确求助?哪些是违规求助? 3333722
关于积分的说明 10263216
捐赠科研通 3049630
什么是DOI,文献DOI怎么找? 1673639
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511