Enhanced hindrance from phenyl outer side chains on nonfullerene acceptor enables unprecedented simultaneous enhancement in organic solar cell performances with 16.7% efficiency

材料科学 有机太阳能电池 副晶态 轨道能级差 侧链 接受者 位阻效应 化学工程 光电子学 光化学 电子受体 有机化学 结晶学 复合材料 聚合物 分子 化学 物理 工程类 凝聚态物理
作者
Gaoda Chai,Yuan Chang,Zhengxing Peng,Yanyan Jia,Xinhui Zou,Dian Yu,Han Yu,Yuzhong Chen,Philip C. Y. Chow,Kam Sing Wong,Jianquan Zhang,Harald Ade,Liwei Yang,Chuanlang Zhan
出处
期刊:Nano Energy [Elsevier BV]
卷期号:76: 105087-105087 被引量:101
标识
DOI:10.1016/j.nanoen.2020.105087
摘要

Inner side-chain engineering on Y6 has been proven successful in improving short-circuit current density (JSC) through fine-tuning aggregated structures of acceptors. However, it fails in tuning the lowest unoccupied molecular orbital level (LUMO) and open-circuit voltage (VOC). In this paper, we turn to focus on engineering the outer side chains on the flanking thienothiophene units with 4-hexylphenyl (PhC6) and 6-phenylhexyl (C6Ph) chains. Use of PhC6 enhances the steric effect between the attached phenyl and the ending group, which in combination with the additional conjugation effect provided by the linking phenyl leads to upshifted energy levels and increased VOC as a result. Again, substitution with the bulkier PhC6 unprecedentedly improves film-morphology with reduced paracrystalline disorder and long period and increased root-mean-square composition variations as well, leading to increased electron and hole mobilities and suppressed monomolecular recombination with JSC and fill-factor (FF) simultaneously enhanced. The PM6:BTP-PhC6-based devices yield a higher efficiency value of 16.7% than the PM6:BTP-C6Ph-based one (15.5%). Therefore, this study shows a conceptual advance in materials design towards reducing the conflict between VOC and JSC in binary blended organic solar cells, which can be achieved by introducing bulkier chains to twist the backbone and simultaneously enhance the packing order.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
ZCY完成签到,获得积分10
1秒前
法外潮湿宝贝完成签到 ,获得积分10
2秒前
香翔想相完成签到,获得积分10
3秒前
Hello应助迅速的立轩采纳,获得10
3秒前
xiaohu发布了新的文献求助10
3秒前
风中珩完成签到,获得积分10
3秒前
烟花应助Rachel采纳,获得10
4秒前
DAXX发布了新的文献求助10
5秒前
桐桐应助无辜的鼠标采纳,获得10
10秒前
xiaohu完成签到,获得积分10
13秒前
14秒前
啤酒人完成签到 ,获得积分10
14秒前
20秒前
缥缈纲完成签到,获得积分10
22秒前
陨yue发布了新的文献求助10
22秒前
素年锦时发布了新的文献求助10
23秒前
25秒前
26秒前
26秒前
26秒前
kingwill应助炙心采纳,获得20
27秒前
27秒前
28秒前
28秒前
28秒前
28秒前
TearMarks完成签到 ,获得积分10
28秒前
28秒前
28秒前
28秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
29秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Voyage au bout de la révolution: de Pékin à Sochaux 700
First Farmers: The Origins of Agricultural Societies, 2nd Edition 500
Simulation of High-NA EUV Lithography 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
The Rise & Fall of Classical Legal Thought 260
Vortices in nonlinear Fields: From Liquid Crystals to Superfluids From Non-Equilibrium Patterns to Cosmic Strings 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4334494
求助须知:如何正确求助?哪些是违规求助? 3845702
关于积分的说明 12012097
捐赠科研通 3486267
什么是DOI,文献DOI怎么找? 1913615
邀请新用户注册赠送积分活动 956737
科研通“疑难数据库(出版商)”最低求助积分说明 857430