心脏毒性
炎症
阿霉素
药理学
细胞凋亡
TLR4型
医学
基因剔除小鼠
癌症研究
化学
受体
免疫学
内科学
化疗
生物化学
作者
Ying‐Jun Zhang,He Huang,Yu Liu,Bin Kong,Guangji Wang
摘要
BACKGROUND Myocardial apoptosis and inflammation play important roles in doxorubicin (DOX)-caused cardiotoxicity. Our prior studies have characterized the effects of myeloid differentiation protein 1(MD-1) in pathological cardiac remodeling and myocardial ischemia/reperfusion (I/R) injury, but its participations and potential molecular mechanisms in DOX-caused cardiotoxicity remain unknown. MATERIAL AND METHODS In the present study, MD-1 knockout mice were generated, and a single intraperitoneal injection of DOX (15 mg/kg) was performed to elicit DOX-induced cardiotoxicity. Cardiac function, histological change, mitochondrial structure, myocardial death, apoptosis, inflammation, and molecular alterations were measured systemically. RESULTS The results showed that the protein and mRNA levels of MD-1 were dramatically downregulated in DOX-treated cardiomyocytes. DOX insult markedly accelerated cardiac dysfunction and injury, followed by enhancements of apoptosis and inflammation, all of which were further aggravated in MD-1 knockout mice. Mechanistically, the TLR4/MAPKs/NF-kappaB pathways, which were over-activated in MD-1-deficient mice, were significantly increased in DOX-damaged cardiomyocytes. Moreover, the abolishment of TLR4 or NF-kappaB via a specific inhibitor exerted protective effects against the adverse effects of MD-1 loss on DOX-caused cardiotoxicity. CONCLUSIONS Collectively, these findings suggest that MD-1 is a novel target for the treatment of DOX-induced cardiotoxicity.
科研通智能强力驱动
Strongly Powered by AbleSci AI