Unsupervised deep learning and semi-automatic data labeling in weed discrimination

人工智能 深度学习 聚类分析 计算机科学 无监督学习 卷积神经网络 学习迁移 机器学习 领域(数学) 模式识别(心理学) 人工神经网络 数学 纯数学
作者
Alessandro dos Santos Ferreira,Daniel Matte Freitas,Gercina Gonçalves da Silva,Hemerson Pistori,Marcelo Theophilo Folhes
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:165: 104963-104963 被引量:93
标识
DOI:10.1016/j.compag.2019.104963
摘要

In recent years, supervised Deep Neural Networks have achieved the state-of-the-art in image recognition and this success has spread in many areas. In agricultural field, several researches have been conducted using architectures such as Convolutional Neural Networks. Despite this success, these works are still highly dependent on very time–costly manual data labeling. In contrast to this scenario, Unsupervised Deep Learning has no dependency on data labeling and is targeted as the future of the area, but after a promising start has been obfuscated by the success of supervised networks. Meanwhile, the low-cost of acquisition of field crop imagery using Unnamed Aerial Vehicles could be largely boosted in real-world applications if these images could be annotated without the need for a human specialist. In this work, we tested two recent unsupervised deep clustering algorithms, Joint Unsupervised Learning of Deep Representations and Image Clusters (JULE) and Deep Clustering for Unsupervised Learning of Visual Features (DeepCluster), using two public weed datasets. The first dataset was captured in a soybean plantation in Brazil and discriminates weeds between grass and broadleaf. The second dataset consists of 17,509 labeled images of eight nationally significant weed species native to Australia. We evaluated the purely unsupervised clustering performance using the NMI and Unsupervised Clustering Accuracy metrics and analysed the effects of techniques like data augmentation and transfer learning to improve clustering quality in a broad discussion that can be useful for unsupervised deep clustering in general. We also propose the usage of semi-automatic data labeling which greatly reduces the cost of manual data labeling and can be easily replicated to different datasets. This approach achieved 97% accuracy in discrimination of grass and broadleaf while reducing the number of manual annotations by 100 times, using a custom set of training images, without images labeled using inaccurate clusters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fosca发布了新的文献求助30
1秒前
2秒前
如意安青发布了新的文献求助10
2秒前
3秒前
周根沅完成签到,获得积分20
3秒前
小蘑菇应助科研通管家采纳,获得10
3秒前
LaTeXer应助科研通管家采纳,获得20
3秒前
科研通AI5应助yiyi采纳,获得10
3秒前
LaTeXer应助科研通管家采纳,获得10
3秒前
LaTeXer应助科研通管家采纳,获得10
4秒前
LaTeXer应助科研通管家采纳,获得10
4秒前
LaTeXer应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
酷波er应助科研通管家采纳,获得10
4秒前
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
xqq发布了新的文献求助10
5秒前
LaTeXer应助科研通管家采纳,获得10
5秒前
LaTeXer应助科研通管家采纳,获得10
5秒前
LaTeXer应助科研通管家采纳,获得10
5秒前
LaTeXer应助科研通管家采纳,获得10
5秒前
LaTeXer应助科研通管家采纳,获得10
5秒前
eureka发布了新的文献求助10
5秒前
JamesPei应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
5秒前
烟花应助科研通管家采纳,获得10
5秒前
ding应助科研通管家采纳,获得10
6秒前
烟花应助科研通管家采纳,获得10
6秒前
科研通AI5应助科研通管家采纳,获得10
6秒前
6秒前
花痴的小松鼠完成签到 ,获得积分10
7秒前
科研通AI5应助wang采纳,获得10
7秒前
aa发布了新的文献求助150
8秒前
华仔应助刘小雨采纳,获得10
8秒前
LL完成签到 ,获得积分20
9秒前
周志轩66完成签到,获得积分20
9秒前
9秒前
搞怪哑铃发布了新的文献求助10
9秒前
阿聪完成签到,获得积分20
10秒前
10秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Clinical Observation and Analysis of Transient Postoperative CA-125 Elevation in a Patient with Sigmoid Colon Adenocarcinoma 200
The direct observation of dislocations 200
Reference Guide for Dynamic Models of HVAC Equipment 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836667
求助须知:如何正确求助?哪些是违规求助? 3378942
关于积分的说明 10506847
捐赠科研通 3098664
什么是DOI,文献DOI怎么找? 1706605
邀请新用户注册赠送积分活动 821108
科研通“疑难数据库(出版商)”最低求助积分说明 772431