Design and analysis of micro-nano scale nested-grooved surface structure for drag reduction based on ‘Vortex-Driven Design’

阻力 涡流 材料科学 格子Boltzmann方法 层流 机械 涡度 物理
作者
Liyue Wang,Cong Wang,Shuyue Wang,Gang Sun,Bo You
出处
期刊:European Journal of Mechanics B-fluids [Elsevier]
卷期号:85: 335-350 被引量:10
标识
DOI:10.1016/j.euromechflu.2020.10.007
摘要

Bioinspired grooved surface structure design has been widely used as an efficient passive flow control method in drag reduction. The total drag of plate with grooved surface structure can be decomposed into friction and pressure drag. In this paper, the relationship between them and the distribution of vortex structure in flow field has been analyzed for obtaining the drag reduction mechanism of grooved surface structure. The concept of ‘Vortex-Driven Design’ is proposed to improve the performance of conventional periodic single-level grooved surface structure. A design scheme of micro-nano scale nested-grooved surface structure with better drag reduction performance is given. The authors conduct numerical simulation of rectangular nested-grooved surface structure in laminar flow considering rarefaction based on Lattice Boltzmann Method at high Knudsen number. The results show that the nested-grooved surface structure induces higher complexity in the secondary vortex structure, and that the changes of vorticity distribution and flow characteristics drive the changes of velocity distribution and shear stress in the grooved surface. Compared with conventional grooved surface structure, the average friction drag of the surface is further reduced. Two geometric optimization cases of the conventional grooved surface and nested-grooved surface are realized by Genetic Algorithm, showing that the maximum drag reduction rate of the optimal nested-grooved surface can reach 18.76% while that of the optimal conventional grooved surface only reaches 13.61%. Based on ‘Vortex-Driven Design’, an innovative material improvement method for drag reduction is proposed as a new direction for subsequent research on microstructure in terms of drag reduction and energy conservation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左佐完成签到 ,获得积分10
1秒前
两栖玩家完成签到 ,获得积分10
3秒前
Zp完成签到,获得积分10
3秒前
3秒前
phy完成签到,获得积分10
4秒前
研友_LwM4GZ发布了新的文献求助10
5秒前
豆子完成签到,获得积分10
6秒前
8秒前
10秒前
愉快初柳关注了科研通微信公众号
10秒前
lake发布了新的文献求助10
10秒前
raiychemj完成签到,获得积分10
10秒前
月明风清完成签到 ,获得积分10
11秒前
加减乘除发布了新的文献求助10
14秒前
吉祥财子发布了新的文献求助10
15秒前
001026Z完成签到,获得积分10
18秒前
314gjj完成签到,获得积分10
21秒前
22秒前
今后应助珂珂子采纳,获得10
23秒前
gggg完成签到 ,获得积分10
24秒前
25秒前
26秒前
豆子完成签到,获得积分10
26秒前
打打应助Solar energy采纳,获得10
26秒前
Owen应助kangkirk采纳,获得10
27秒前
Edward完成签到,获得积分20
28秒前
lin229完成签到,获得积分10
30秒前
SciGPT应助icy20161190采纳,获得10
30秒前
Jasper应助加减乘除采纳,获得10
31秒前
、、、完成签到,获得积分10
31秒前
愉快初柳发布了新的文献求助10
31秒前
31秒前
Solar energy发布了新的文献求助10
31秒前
daidai完成签到 ,获得积分10
32秒前
Doria完成签到 ,获得积分10
34秒前
俏皮半凡发布了新的文献求助10
35秒前
Sun1c7完成签到,获得积分10
39秒前
默默乘云完成签到 ,获得积分10
40秒前
虚幻哑铃发布了新的文献求助10
40秒前
41秒前
高分求助中
Sustainable Land Management: Strategies to Cope with the Marginalisation of Agriculture 1000
Corrosion and Oxygen Control 600
Python Programming for Linguistics and Digital Humanities: Applications for Text-Focused Fields 500
Heterocyclic Stilbene and Bibenzyl Derivatives in Liverworts: Distribution, Structures, Total Synthesis and Biological Activity 500
重庆市新能源汽车产业大数据招商指南(两链两图两池两库两平台两清单两报告) 400
Division and square root. Digit-recurrence algorithms and implementations 400
行動データの計算論モデリング 強化学習モデルを例として 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2546625
求助须知:如何正确求助?哪些是违规求助? 2175850
关于积分的说明 5601248
捐赠科研通 1896667
什么是DOI,文献DOI怎么找? 946382
版权声明 565379
科研通“疑难数据库(出版商)”最低求助积分说明 503569