量子点
纳米尺度
材料科学
光电子学
电泳沉积
沉积(地质)
纳米技术
二极管
纳米颗粒
发光二极管
胶体
电泳
过程(计算)
可扩展性
像素
化学
特征(语言学)
电流(流体)
比例(比率)
化学工程
量子
电子
原子力显微镜
作者
B. K. Park,Geun Woo Baek,Hansol Seo,Minjun Kim,Donghyo Hahm,Yang‐Hee Kim,Heesun Yang,Wan Ki Bae,Hanchul Cho,Jaehoon Kim
标识
DOI:10.1002/lpor.202502567
摘要
ABSTRACT Patterning of colloidal quantum dots (QDs) is essential for realizing high‐resolution, high‐brightness, full‐color quantum dot light‐emitting diodes (QLEDs) and QD color‐conversion layers for near‐eye microdisplays in augmented and virtual reality systems. However, the reliably producing uniform nanoscale QD patterns and practical full‐color QLEDs remains a significant challenge. Here, we report a multi‐functional electrophoretic deposition (MEPD) strategy that enables selective, sequential, and high‐throughput patterning of nanoscale QD patterns. Using ligand‐engineered, negatively charged QDs, MEPD forms 435 600 sub‐pixels with only 3 V applied for 15 s. The same solution chemistry and low‐voltage conditions enable multi‐color patterns across feature sizes ranging from tens of micrometers down to 500 nm, demonstrating constant process complexity independent of pixel dimensions. Moreover, sequential MEPD of ZnO nanoparticles and QDs produces full‐color QLEDs featuring a pixel‐isolated electron transport layer, lateral currents in the tens of nanoamperes, and enhanced efficiencies. These results establish a scalable and manufacturing‐compatible route toward next‐generation ultra‐high‐resolution display.
科研通智能强力驱动
Strongly Powered by AbleSci AI