Combining Suspect Screening with Large Language Model-Based Text Mining to Comprehensively Characterize Organic Compounds in Human Milk Associated with Pregnancy Complications

妊娠期糖尿病 怀孕 医学 生物信息学 糖尿病 化学 计算生物学 氧化应激 羧酸 胎儿 妊娠期 产科 贫血 嫌疑犯 重症监护医学 人类健康 生物
作者
Xin Cheng,Lu Gao,Qiaofeng Ai,R. Wang,Siya Hao,Qianling Yang,Yingxin Zhang,Yucheng Lou,Jingguang Li,Lei Zhang,Bing Lyu,Minghui Zheng
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:60 (1): 257-270
标识
DOI:10.1021/acs.est.5c12937
摘要

Chemical exposure contributes to maternal pregnancy complications like gestational hypertension (GH), anemia, and gestational diabetes mellitus (GDM). However, current studies remain fragmented due to limited analysis of compounds, impeding mechanistic insights. Here, we present a novel framework that integrates high-throughput analysis and large language model-based text mining to identify organic compounds while leveraging existing massive data, thereby enabling a comprehensive understanding of pregnancy complication mechanisms and establishing an exposure atlas. Using this approach, we identified five compounds in human milk for the first time, including carbazole and 4,4'-diphenoxybenzophenone, and 35 additional compounds not previously linked to pregnancy complications. We further employed text mining to comprehensively uncover disease-specific chemical signatures based on global data: GH with polycyclic aromatic hydrocarbons (PAHs) and derivatives (e.g., 2-methylnaphthalene and acenaphthene), anemia with nitrogen-containing compounds (e.g., 4-methoxyformanilide), and GDM with long-chain carboxylic acids (e.g., 2,4,7,9-tetramethyldec-5-yne-4,7-diol). Further analysis revealed pathogenic mechanisms: PAHs and derivatives promoted oxidative stress in GH, nitrogen-containing compounds damaged red blood cells in anemia, and long-chain carboxylic acids interfered with mitochondrial function in GDM. These findings construct an atlas of organic compounds associated with pregnancy complications and offer new leads for understanding their environmental origins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
ohhh完成签到,获得积分10
3秒前
5秒前
鲤鱼迎蕾发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
舒心思雁完成签到,获得积分10
7秒前
何必在乎发布了新的文献求助10
7秒前
lsx完成签到,获得积分10
9秒前
zzz完成签到,获得积分10
10秒前
10秒前
xiaohui发布了新的文献求助10
11秒前
今后应助彭凯采纳,获得10
11秒前
Orange应助何必在乎采纳,获得10
13秒前
慕青应助ROOOOOK采纳,获得10
13秒前
cf2v完成签到 ,获得积分0
13秒前
LCB发布了新的文献求助10
15秒前
15秒前
15秒前
隐形熊猫发布了新的文献求助10
15秒前
16秒前
gnufgg完成签到,获得积分10
16秒前
17秒前
完美世界应助caiia采纳,获得30
17秒前
科研通AI6.1应助johirol采纳,获得10
18秒前
19秒前
19秒前
情怀应助xhuang采纳,获得10
20秒前
积极盼晴发布了新的文献求助10
21秒前
Nomb1发布了新的文献求助10
21秒前
21秒前
21秒前
量子星尘发布了新的文献求助10
22秒前
8R60d8应助kingwill采纳,获得20
23秒前
超级机器猫完成签到 ,获得积分10
23秒前
ROOOOOK完成签到,获得积分10
23秒前
陈孟发布了新的文献求助10
23秒前
24秒前
24秒前
orixero应助1111采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786316
求助须知:如何正确求助?哪些是违规求助? 5693234
关于积分的说明 15469500
捐赠科研通 4915259
什么是DOI,文献DOI怎么找? 2645627
邀请新用户注册赠送积分活动 1593360
关于科研通互助平台的介绍 1547657