Lung cancer scRNA-seq and lipidomics reveal aberrant lipid metabolism for early-stage diagnosis

脂类学 癌症 脂质代谢 阶段(地层学) 队列 肿瘤科 内科学 肺癌 医学 病理 生物 生物信息学 古生物学
作者
Guangxi Wang,Mantang Qiu,Xudong Xing,Juntuo Zhou,Hantao Yao,Mingru Li,Rong Yin,Yan Hou,Yang Li,Shuli Pan,Yuqing Huang,Fan Yang,Fan Bai,Honggang Nie,Shuangshuang Di,Limei Guo,Meng Zhu,Jun Wang,Yuxin Yin
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science]
卷期号:14 (630) 被引量:158
标识
DOI:10.1126/scitranslmed.abk2756
摘要

Lung cancer is the leading cause of cancer mortality, and early detection is key to improving survival. However, there are no reliable blood-based tests currently available for early-stage lung cancer diagnosis. Here, we performed single-cell RNA sequencing of different early-stage lung cancers and found that lipid metabolism was broadly dysregulated in different cell types, with glycerophospholipid metabolism as the most altered lipid metabolism–related pathway. Untargeted lipidomics was carried out in an exploratory cohort of 311 participants. Through support vector machine algorithm-based and mass spectrum–based feature selection, we identified nine lipids (lysophosphatidylcholines 16:0, 18:0, and 20:4; phosphatidylcholines 16:0–18:1, 16:0–18:2, 18:0–18:1, 18:0–18:2, and 16:0–22:6; and triglycerides 16:0–18:1–18:1) as the features most important for early-stage cancer detection. Using these nine features, we developed a liquid chromatography–mass spectrometry (MS)–based targeted assay using multiple reaction monitoring. This target assay achieved 100.00% specificity on an independent validation cohort. In a hospital-based lung cancer screening cohort of 1036 participants examined by low-dose computed tomography and a prospective clinical cohort containing 109 participants, the assay reached more than 90.00% sensitivity and 92.00% specificity. Accordingly, matrix-assisted laser desorption/ionization MS imaging confirmed that the selected lipids were differentially expressed in early-stage lung cancer tissues in situ. This method, designated as Lung Cancer Artificial Intelligence Detector, may be useful for early detection of lung cancer or large-scale screening of high-risk populations for cancer prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
黎星发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
浮游应助魔幻的斑马采纳,获得10
2秒前
KK完成签到,获得积分10
2秒前
wondor1111发布了新的文献求助10
2秒前
3秒前
tk完成签到,获得积分10
3秒前
4秒前
4秒前
义气山水发布了新的文献求助10
5秒前
Orange应助酷炫采珊采纳,获得10
6秒前
6秒前
小广发布了新的文献求助10
6秒前
6秒前
7秒前
萧雅发布了新的文献求助20
7秒前
qixingbao07126完成签到,获得积分10
7秒前
kevin1018完成签到,获得积分10
7秒前
无心发布了新的文献求助10
8秒前
dulaoban发布了新的文献求助10
9秒前
9秒前
123nm完成签到,获得积分10
9秒前
10秒前
10秒前
沉默似狮发布了新的文献求助30
11秒前
11秒前
搜集达人应助辛勤汲采纳,获得10
11秒前
12秒前
12秒前
XLH完成签到 ,获得积分10
12秒前
13秒前
LXZ发布了新的文献求助10
13秒前
搜集达人应助梓歆采纳,获得10
13秒前
MMMMM关注了科研通微信公众号
13秒前
清脆映真发布了新的文献求助10
14秒前
14秒前
MCRong应助橘子采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Investigation the picking techniques for developing and improving the mechanical harvesting of citrus 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5193830
求助须知:如何正确求助?哪些是违规求助? 4376175
关于积分的说明 13628611
捐赠科研通 4231092
什么是DOI,文献DOI怎么找? 2320710
邀请新用户注册赠送积分活动 1319080
关于科研通互助平台的介绍 1269416