Lung cancer scRNA-seq and lipidomics reveal aberrant lipid metabolism for early-stage diagnosis

脂类学 癌症 脂质代谢 阶段(地层学) 队列 肿瘤科 内科学 肺癌 医学 病理 生物 生物信息学 古生物学
作者
Guangxi Wang,Mantang Qiu,Xudong Xing,Juntuo Zhou,Hantao Yao,Mingru Li,Rong Yin,Yan Hou,Yang Li,Shuli Pan,Yuqing Huang,Fan Yang,Fan Bai,Honggang Nie,Shuangshuang Di,Limei Guo,Meng Zhu,Jun Wang,Yuxin Yin
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science]
卷期号:14 (630) 被引量:120
标识
DOI:10.1126/scitranslmed.abk2756
摘要

Lung cancer is the leading cause of cancer mortality, and early detection is key to improving survival. However, there are no reliable blood-based tests currently available for early-stage lung cancer diagnosis. Here, we performed single-cell RNA sequencing of different early-stage lung cancers and found that lipid metabolism was broadly dysregulated in different cell types, with glycerophospholipid metabolism as the most altered lipid metabolism–related pathway. Untargeted lipidomics was carried out in an exploratory cohort of 311 participants. Through support vector machine algorithm-based and mass spectrum–based feature selection, we identified nine lipids (lysophosphatidylcholines 16:0, 18:0, and 20:4; phosphatidylcholines 16:0–18:1, 16:0–18:2, 18:0–18:1, 18:0–18:2, and 16:0–22:6; and triglycerides 16:0–18:1–18:1) as the features most important for early-stage cancer detection. Using these nine features, we developed a liquid chromatography–mass spectrometry (MS)–based targeted assay using multiple reaction monitoring. This target assay achieved 100.00% specificity on an independent validation cohort. In a hospital-based lung cancer screening cohort of 1036 participants examined by low-dose computed tomography and a prospective clinical cohort containing 109 participants, the assay reached more than 90.00% sensitivity and 92.00% specificity. Accordingly, matrix-assisted laser desorption/ionization MS imaging confirmed that the selected lipids were differentially expressed in early-stage lung cancer tissues in situ. This method, designated as Lung Cancer Artificial Intelligence Detector, may be useful for early detection of lung cancer or large-scale screening of high-risk populations for cancer prevention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助比大家采纳,获得10
1秒前
SciGPT应助阿海的采纳,获得10
2秒前
逆天大脚完成签到,获得积分10
4秒前
None发布了新的文献求助10
7秒前
10秒前
underunder完成签到,获得积分10
11秒前
13秒前
可爱的函函应助wenbin采纳,获得10
13秒前
稳重奇异果应助梅子酒采纳,获得20
13秒前
nicelily完成签到 ,获得积分10
13秒前
15秒前
16秒前
流水完成签到 ,获得积分10
17秒前
符寄柔发布了新的文献求助10
18秒前
18秒前
19秒前
21秒前
22秒前
ergatoid完成签到,获得积分10
23秒前
欢喜的天空完成签到,获得积分20
23秒前
香蕉觅云应助大坚果采纳,获得20
25秒前
26秒前
27秒前
31秒前
文献看不懂应助火花采纳,获得10
31秒前
32秒前
活力的雨雪完成签到,获得积分10
33秒前
34秒前
思源应助lipppu采纳,获得10
34秒前
王清水完成签到 ,获得积分10
34秒前
34秒前
文茵完成签到,获得积分10
35秒前
36秒前
qiulong发布了新的文献求助10
37秒前
Hello应助peanut采纳,获得10
37秒前
wenbin发布了新的文献求助10
38秒前
细心的小鸽子完成签到,获得积分10
41秒前
大坚果发布了新的文献求助20
42秒前
wenbin完成签到,获得积分10
44秒前
村口的帅老头完成签到 ,获得积分10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mindfulness and Character Strengths: A Practitioner's Guide to MBSP 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3776552
求助须知:如何正确求助?哪些是违规求助? 3322124
关于积分的说明 10208682
捐赠科研通 3037339
什么是DOI,文献DOI怎么找? 1666647
邀请新用户注册赠送积分活动 797603
科研通“疑难数据库(出版商)”最低求助积分说明 757893