The relationship between text message sentiment and self-reported depression

概化理论 萧条(经济学) 心理学 人称代词 情绪分析 人口 临床心理学 人工智能 医学 计算机科学 发展心理学 语言学 环境卫生 哲学 宏观经济学 经济
作者
Tony Liu,Jonah Meyerhoff,Johannes C. Eichstaedt,Chris Karr,Susan M. Kaiser,Konrad P. Körding,David C. Mohr,Lyle Ungar
出处
期刊:Journal of Affective Disorders [Elsevier BV]
卷期号:302: 7-14 被引量:38
标识
DOI:10.1016/j.jad.2021.12.048
摘要

Personal sensing has shown promise for detecting behavioral correlates of depression, but there is little work examining personal sensing of cognitive and affective states. Digital language, particularly through personal text messages, is one source that can measure these markers.We correlated privacy-preserving sentiment analysis of text messages with self-reported depression symptom severity. We enrolled 219 U.S. adults in a 16 week longitudinal observational study. Participants installed a personal sensing app on their phones, which administered self-report PHQ-8 assessments of their depression severity, collected phone sensor data, and computed anonymized language sentiment scores from their text messages. We also trained machine learning models for predicting end-of-study self-reported depression status using on blocks of phone sensor and text features.In correlation analyses, we find that degrees of depression, emotional, and personal pronoun language categories correlate most strongly with self-reported depression, validating prior literature. Our classification models which predict binary depression status achieve a leave-one-out AUC of 0.72 when only considering text features and 0.76 when combining text with other networked smartphone sensors.Participants were recruited from a panel that over-represented women, caucasians, and individuals with self-reported depression at baseline. As language use differs across demographic factors, generalizability beyond this population may be limited. The study period also coincided with the initial COVID-19 outbreak in the United States, which may have affected smartphone sensor data quality.Effective depression prediction through text message sentiment, especially when combined with other personal sensors, could enable comprehensive mental health monitoring and intervention.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃秋刀鱼的大脸猫完成签到,获得积分10
1秒前
接accept完成签到 ,获得积分10
2秒前
leo227完成签到,获得积分10
2秒前
刘刘完成签到,获得积分10
2秒前
毕个业完成签到 ,获得积分10
4秒前
Free完成签到,获得积分10
4秒前
longmad完成签到,获得积分10
4秒前
栗子完成签到,获得积分10
6秒前
黑暗与黎明完成签到 ,获得积分10
7秒前
gentledragon完成签到,获得积分10
7秒前
8秒前
123完成签到,获得积分10
8秒前
星辰大海应助tutu采纳,获得10
13秒前
nano发布了新的文献求助10
14秒前
17秒前
雷小牛完成签到 ,获得积分10
17秒前
wang完成签到,获得积分10
18秒前
19秒前
磊磊完成签到,获得积分10
20秒前
21秒前
大模型应助咩咩茶采纳,获得10
23秒前
CCsouljump完成签到 ,获得积分10
25秒前
King完成签到,获得积分10
25秒前
三清小爷完成签到,获得积分10
25秒前
tutu发布了新的文献求助10
26秒前
scarlett完成签到,获得积分10
30秒前
júpiter完成签到,获得积分10
30秒前
宇宇宇c完成签到,获得积分10
31秒前
陶醉的又夏完成签到 ,获得积分10
32秒前
33秒前
33秒前
tutu完成签到,获得积分10
33秒前
cccyyb完成签到,获得积分10
33秒前
34秒前
百地希留耶完成签到 ,获得积分10
34秒前
呆萌的雁荷完成签到,获得积分10
35秒前
sdfdzhang完成签到 ,获得积分10
36秒前
雪山飞龙发布了新的文献求助10
36秒前
张112233完成签到,获得积分10
36秒前
今天也要好好学习完成签到,获得积分10
36秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
One Man Talking: Selected Essays of Shao Xunmei, 1929–1939 (PDF!) 1000
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3788426
求助须知:如何正确求助?哪些是违规求助? 3333744
关于积分的说明 10263363
捐赠科研通 3049649
什么是DOI,文献DOI怎么找? 1673652
邀请新用户注册赠送积分活动 802120
科研通“疑难数据库(出版商)”最低求助积分说明 760511