Development and Assessment of Machine Learning Models for Individualized Risk Assessment of Mastectomy Skin Flap Necrosis

医学 乳房切除术 围手术期 外科 置信区间 并发症 乳房再造术 解剖(医学)
作者
Abbas M. Hassan,Andrea P. Biaggi,Malke Asaad,Doaa F. Andejani,Jun Liu,Anaeze C. Offodile,Jesse C. Selber,Charles E. Butler
出处
期刊:Annals of Surgery [Lippincott Williams & Wilkins]
卷期号:Publish Ahead of Print
标识
DOI:10.1097/sla.0000000000005386
摘要

To develop, validate, and evaluate machine learning (ML) algorithms for predicting mastectomy skin flap necrosis (MSFN).MSFN is a devastating complication that causes significant distress to patients and physicians by prolonging recovery time, compromising surgical outcomes, and delaying adjuvant therapy.We conducted comprehensive review of all consecutive patients who underwent mastectomy and immediate implant-based reconstruction (IBR) from January 2018 to December 2019. Nine supervised ML algorithms were developed to predict MSFN. Patient data were partitioned into training (80%) and testing (20%) sets.We identified 694 mastectomies with immediate IBR in 481 patients. The patients had a mean age of 50 ± 11.5 years, a mean body mass index of 26.7 ± 4.8 kg/m2, and a median follow-up time of 16.1 (range, 11.9-23.2) months. MSFN developed in 6% (n=40) of patients. The random forest model demonstrated the best discriminatory performance (area under curve, 0.70), achieved a mean accuracy of 89% (95% confidence interval [CI], 83-94%), and identified 10 predictors of MSFN. Decision curve analysis demonstrated that ML models have a superior net benefit regardless of the probability threshold. Higher BMI, older age, hypertension, subpectoral device placement, nipple-sparing mastectomy, axillary nodal dissection, and no acellular dermal matrix use were all independently associated with a higher risk of MSFN.Machine learning algorithms trained on readily available perioperative clinical data can accurately predict the occurrence of MSFN and aid in individualized patient counseling, preoperative optimization, and surgical planning to reduce the risk of this devastating complication.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得100
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
呆萌星星应助科研通管家采纳,获得20
2秒前
无花果应助科研通管家采纳,获得10
2秒前
英姑应助科研通管家采纳,获得10
2秒前
无花果应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
乐开欣应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
赘婿应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得30
4秒前
乐开欣应助科研通管家采纳,获得10
4秒前
NexusExplorer应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
Ni完成签到 ,获得积分20
4秒前
4秒前
6秒前
Panini完成签到,获得积分10
7秒前
8秒前
9秒前
爱睡觉的森森完成签到,获得积分10
9秒前
梁成劲发布了新的文献求助10
11秒前
丘比特应助YIFEI采纳,获得10
12秒前
12秒前
14秒前
Shilong发布了新的文献求助10
15秒前
Hzz完成签到,获得积分10
15秒前
友好的天曼完成签到 ,获得积分10
16秒前
NexusExplorer应助王小玉玉采纳,获得10
18秒前
长安888发布了新的文献求助10
18秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864242
求助须知:如何正确求助?哪些是违规求助? 3406509
关于积分的说明 10650293
捐赠科研通 3130523
什么是DOI,文献DOI怎么找? 1726433
邀请新用户注册赠送积分活动 831749
科研通“疑难数据库(出版商)”最低求助积分说明 780004