Motor imagery EEG decoding using manifold embedded transfer learning

脑-机接口 脑电图 计算机科学 解码方法 学习迁移 人工智能 运动表象 模式识别(心理学) 歧管(流体力学) 联合概率分布 歧管对齐 协方差 校准 信号(编程语言) 语音识别 非线性降维 算法 数学 心理学 神经科学 机械工程 统计 工程类 程序设计语言 降维
作者
Yinhao Cai,Qingshan She,Jiyue Ji,Yuliang Ma,Jianhai Zhang,Yingchun Zhang
出处
期刊:Journal of Neuroscience Methods [Elsevier BV]
卷期号:370: 109489-109489 被引量:33
标识
DOI:10.1016/j.jneumeth.2022.109489
摘要

Brain computer interface (BCI) utilizes brain signals to help users interact with external devices directly. EEG is one of the most commonly used techniques for brain signal acquisition in BCI. However, it is notoriously difficult to build a generic EEG recognition model due to significant non-stationarity and subject-to-subject variations, and the requirement for long time training. Transfer learning (TL) is particularly useful because it can alleviate the calibration requirement in EEG-based BCI applications by transferring the calibration information from existing subjects to new subject. To take advantage of geometric properties in Riemann manifold and joint distribution adaptation, a manifold embedded transfer learning (METL) framework was proposed for motor imagery (MI) EEG decoding.First, the covariance matrices of the EEG trials are first aligned on the SPD manifold. Then the features are extracted from both the symmetric positive definite (SPD) manifold and Grassmann manifold. Finally, the classification model is learned by combining the structural risk minimization (SRM) of source domain and joint distribution alignment of source and target domains.Experimental results on two MI EEG datasets verify the effectiveness of the proposed METL. In particular, when there are a small amount of labeled samples in the target domain, METL demonstrated a more accurate and stable classification performance than conventional methods.Compared with several state-of-the-art methods, METL has achieved better classification accuracy, 71.81% and 69.06% in single-to-single (STS), 83.14% and 76.00% in multi-to-single (MTS) transfer tasks, respectively.METL can cope with single source domain or multi-source domains and compared with single-source transfer learning, multi-source transfer learning can improve the performance effectively due to the data expansion. It is effective enough to achieve superior performance for classification of EEG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Serein完成签到,获得积分10
3秒前
8秒前
9秒前
心想事成完成签到 ,获得积分10
9秒前
LJHUA完成签到,获得积分10
20秒前
22秒前
正直的松鼠完成签到 ,获得积分10
26秒前
zcbb完成签到,获得积分10
29秒前
31秒前
聂青枫完成签到,获得积分10
33秒前
nater3ver完成签到,获得积分10
33秒前
Hiram完成签到,获得积分10
34秒前
35秒前
zcbb发布了新的文献求助10
38秒前
nater2ver完成签到,获得积分10
44秒前
书生也是小郎中完成签到 ,获得积分10
45秒前
高高代珊完成签到 ,获得积分10
46秒前
50秒前
51秒前
xmjxmj217完成签到 ,获得积分10
53秒前
wangwenzhe发布了新的文献求助10
54秒前
wenhuanwenxian完成签到 ,获得积分10
55秒前
nater1ver完成签到,获得积分10
57秒前
丘比特应助wangwenzhe采纳,获得10
1分钟前
dong完成签到 ,获得积分10
1分钟前
1分钟前
Lucas应助ju龙哥采纳,获得10
1分钟前
1分钟前
1分钟前
77完成签到 ,获得积分10
1分钟前
小学生学免疫完成签到 ,获得积分10
1分钟前
ju龙哥发布了新的文献求助10
1分钟前
杨抠脚完成签到,获得积分10
1分钟前
舒心的芝麻完成签到 ,获得积分10
1分钟前
关中人完成签到,获得积分10
1分钟前
ju龙哥完成签到,获得积分10
1分钟前
panpanliumin完成签到,获得积分0
1分钟前
乐观的星月完成签到 ,获得积分10
1分钟前
1分钟前
余味应助科研通管家采纳,获得10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Computational Atomic Physics for Kilonova Ejecta and Astrophysical Plasmas 500
Technologies supporting mass customization of apparel: A pilot project 450
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3782730
求助须知:如何正确求助?哪些是违规求助? 3328104
关于积分的说明 10234493
捐赠科研通 3043122
什么是DOI,文献DOI怎么找? 1670450
邀请新用户注册赠送积分活动 799702
科研通“疑难数据库(出版商)”最低求助积分说明 758994