LEADD: Lamarckian evolutionary algorithm for de novo drug design

计算机科学 进化算法 化学空间 成对比较 水准点(测量) 虚拟筛选 算法 人工智能
作者
Alan Kerstjens,Hans De Winter
出处
期刊:Journal of Cheminformatics [BioMed Central]
卷期号:14 (1)
标识
DOI:10.1186/s13321-022-00582-y
摘要

Given an objective function that predicts key properties of a molecule, goal-directed de novo molecular design is a useful tool to identify molecules that maximize or minimize said objective function. Nonetheless, a common drawback of these methods is that they tend to design synthetically unfeasible molecules. In this paper we describe a Lamarckian evolutionary algorithm for de novo drug design (LEADD). LEADD attempts to strike a balance between optimization power, synthetic accessibility of designed molecules and computational efficiency. To increase the likelihood of designing synthetically accessible molecules, LEADD represents molecules as graphs of molecular fragments, and limits the bonds that can be formed between them through knowledge-based pairwise atom type compatibility rules. A reference library of drug-like molecules is used to extract fragments, fragment preferences and compatibility rules. A novel set of genetic operators that enforce these rules in a computationally efficient manner is presented. To sample chemical space more efficiently we also explore a Lamarckian evolutionary mechanism that adapts the reproductive behavior of molecules. LEADD has been compared to both standard virtual screening and a comparable evolutionary algorithm using a standardized benchmark suite and was shown to be able to identify fitter molecules more efficiently. Moreover, the designed molecules are predicted to be easier to synthesize than those designed by other evolutionary algorithms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴晓敏发布了新的文献求助10
1秒前
吴彦祖完成签到,获得积分20
2秒前
云过半山发布了新的文献求助10
2秒前
俊鱼完成签到,获得积分10
3秒前
4秒前
5秒前
可爱小哪吒完成签到,获得积分10
5秒前
45343发布了新的文献求助10
6秒前
宋宋完成签到,获得积分10
7秒前
Akim应助北风采纳,获得10
8秒前
666发布了新的文献求助10
11秒前
12秒前
13秒前
16秒前
16秒前
16秒前
17秒前
19秒前
19秒前
科目三应助balabala采纳,获得10
19秒前
xzy998发布了新的文献求助10
20秒前
20秒前
oia完成签到,获得积分10
21秒前
北风发布了新的文献求助10
21秒前
xueyixiaogou发布了新的文献求助10
23秒前
只只呀发布了新的文献求助10
24秒前
土豆发布了新的文献求助10
24秒前
25秒前
星河之外spectator完成签到,获得积分10
25秒前
yyfdqms完成签到,获得积分10
25秒前
Mr.Bad发布了新的文献求助10
26秒前
威武问枫完成签到,获得积分20
28秒前
28秒前
29秒前
30秒前
茉莉青提发布了新的文献求助20
31秒前
ss应助Suica采纳,获得10
32秒前
乐乐应助llg采纳,获得10
32秒前
balabala发布了新的文献求助10
34秒前
34秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778761
求助须知:如何正确求助?哪些是违规求助? 3324341
关于积分的说明 10217907
捐赠科研通 3039436
什么是DOI,文献DOI怎么找? 1668081
邀请新用户注册赠送积分活动 798544
科研通“疑难数据库(出版商)”最低求助积分说明 758415