Core-shell heterogeneous graphene-based aerogel microspheres for high-performance broadband microwave absorption via resonance loss and sequential attenuation

材料科学 反射损耗 石墨烯 气凝胶 微波食品加热 吸收(声学) 光电子学 衰减 电磁辐射 复合材料 纳米技术 复合数 光学 电信 物理 计算机科学
作者
Dandan Zhi,Tian Li,Zhaohui Qi,Jinzhe Li,Yingrui Tian,Wen‐Ting Deng,Fanbin Meng
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:433: 134496-134496 被引量:176
标识
DOI:10.1016/j.cej.2022.134496
摘要

Graphene-based aerogels have been attracted wide attention in microwave absorption (MA) for their lightweight and high-efficient absorption. However, the assembly design of their shape and structure is still lacking, bringing obstacles to the optimization of MA. Herein, we applied coaxial electrospinning to shape aerogel monoliths into aerogel microspheres (AMs) with core–shell bilayer structure, exhibiting distinguishing broadband and tunable high‐performance MA. The composite AMs including reduced oxide graphene/Fe3O4 shell layer and chitosan derived carbon core layer ([email protected]/Fe3O4) can be achieved via coaxial electrospinning-freeze frying followed by calcination. The core–shell structure can make electromagnetic wave sequential entry and attenuate, enhancing the impedance matching and electromagnetic wave propagation. Significantly, with a low loading of 5 wt%, the core–shell AMs exhibit a minimum reflection loss of − 61 dB at 13.84 GHz with the thickness of 2.5 mm, and the effective absorption bandwidth reach 6.88 GHz. More importantly, the corresponding absorption bandwidth is further widened to 7.52 GHz by adjusting the core–shell ratio. Electromagnetic simulation further indicate the core–shell bilayer coupling including electromagnetic wave sequential attenuation and cavity resonance loss can realize the enhanced broadband MA. The core–shell bilayer structure strategy paves a way to achieve graphene-based aerogel absorbers with high‐performance MA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
guo关闭了guo文献求助
2秒前
2秒前
2秒前
3秒前
4秒前
5秒前
hahah发布了新的文献求助10
5秒前
高子奕发布了新的文献求助10
5秒前
我能行完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
爱马仕完成签到,获得积分10
7秒前
7秒前
7秒前
离个大谱发布了新的文献求助10
7秒前
轻松盼雁完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
10秒前
科目三应助oTo采纳,获得10
10秒前
11秒前
11秒前
11秒前
12秒前
xh93发布了新的文献求助10
12秒前
sian完成签到,获得积分10
12秒前
香蕉发布了新的文献求助10
12秒前
13秒前
烂漫的沂发布了新的文献求助10
13秒前
13秒前
13秒前
爆米花应助虚幻德地采纳,获得10
14秒前
15秒前
ni发布了新的文献求助10
15秒前
yyzhou应助耍酷的天德采纳,获得10
15秒前
16秒前
16秒前
科研F5发布了新的文献求助10
17秒前
十九完成签到 ,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532671
求助须知:如何正确求助?哪些是违规求助? 4621392
关于积分的说明 14577722
捐赠科研通 4561280
什么是DOI,文献DOI怎么找? 2499258
邀请新用户注册赠送积分活动 1479203
关于科研通互助平台的介绍 1450406