亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Estimation Model of Potassium Content in Cotton Leaves Based on Wavelet Decomposition Spectra and Image Combination Features

高光谱成像 数学 偏最小二乘回归 小波 模式识别(心理学) 小波变换 人工智能 主成分分析 生物系统
作者
Qiushuang Yao,Ze Zhang,Xin Lv,Xiangyu Chen,Lulu Ma,Cong Sun
出处
期刊:Frontiers in Plant Science [Frontiers Media]
卷期号:13
标识
DOI:10.3389/fpls.2022.920532
摘要

Potassium (K) is one of the most important elements influencing cotton metabolism, quality, and yield. Due to the characteristics of strong fluidity and fast redistribution of the K in plants, it leads to rapid transformation of the K lack or abundance in plant leaves; therefore, rapid and accurate estimation of potassium content in leaves (LKC, %) is a necessary prerequisite to solve the regulation of plant potassium. In this study, we concentrated on the LKC of cotton in different growth stages, an estimation model based on the combined characteristics of wavelet decomposition spectra and image was proposed, and discussed the potential of different combined features in accurate estimation of the LKC. We collected hyperspectral imaging data of 60 main-stem leaves at the budding, flowering, and boll setting stages of cotton, respectively. The original spectrum (R) is decomposed by continuous wavelet transform (CWT). The competitive adaptive reweighted sampling (CARS) and random frog (RF) algorithms combined with partial least squares regression (PLSR) model were used to determine the optimal decomposition scale and characteristic wavelengths at three growth stages. Based on the best “CWT spectra” model, the grayscale image databases were constructed, and the image features were extracted by using color moment and gray level co-occurrence matrix (GLCM). The results showed that the best decomposition scales of the three growth stages were CWT-1, 3, and 9. The best growth stage for estimating LKC in cotton was the boll setting stage, with the feature combination of “CWT-9 spectra + texture,” and its determination coefficients ( R 2 val) and root mean squared error (RMSEval) values were 0.90 and 0.20. Compared with the single R model ( R 2 val = 0.66, RMSEval = 0.34), the R 2 val increased by 0.24. Different from our hypothesis, the combined feature based on “CWT spectra + color + texture” cannot significantly improve the estimation accuracy of the model, it means that the performance of the estimation model established with more feature information is not correspondingly better. Moreover, the texture features contributed more to the improvement of model performance than color features did. These results provide a reference for rapid and non-destructive monitoring of the LKC in cotton.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助kokok采纳,获得10
11秒前
乐乐应助大胆的蜜粉采纳,获得10
15秒前
碧蓝的盼夏完成签到,获得积分10
55秒前
1分钟前
云是完成签到 ,获得积分10
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得30
2分钟前
chentong完成签到 ,获得积分10
3分钟前
121完成签到,获得积分10
3分钟前
Lainey完成签到,获得积分10
3分钟前
蚂蚁踢大象完成签到 ,获得积分10
5分钟前
彭于晏应助yuan采纳,获得10
5分钟前
5分钟前
123发布了新的文献求助10
5分钟前
123完成签到,获得积分10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
yuan发布了新的文献求助10
6分钟前
jyy完成签到,获得积分10
7分钟前
xin关闭了xin文献求助
7分钟前
7分钟前
Ava应助科研通管家采纳,获得10
8分钟前
mashibeo完成签到,获得积分10
8分钟前
叶子发布了新的文献求助10
9分钟前
Jasper应助科研通管家采纳,获得10
10分钟前
叶子发布了新的文献求助10
10分钟前
ali发布了新的文献求助80
10分钟前
10分钟前
paper发布了新的文献求助10
10分钟前
开朗冬萱完成签到 ,获得积分10
10分钟前
11分钟前
babylow完成签到,获得积分10
12分钟前
13分钟前
汪鸡毛完成签到 ,获得积分10
13分钟前
淡定幻翠发布了新的文献求助10
13分钟前
852应助淡定幻翠采纳,获得10
14分钟前
14分钟前
科研通AI2S应助大胆的蜜粉采纳,获得10
14分钟前
天天快乐应助科研通管家采纳,获得10
14分钟前
14分钟前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
Fire Protection Handbook, 21st Edition volume1和volume2 360
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3901853
求助须知:如何正确求助?哪些是违规求助? 3446533
关于积分的说明 10845007
捐赠科研通 3171729
什么是DOI,文献DOI怎么找? 1752453
邀请新用户注册赠送积分活动 847237
科研通“疑难数据库(出版商)”最低求助积分说明 789785