多物理
电解
碱性水电解
机械工程
过程(计算)
可再生能源
电解槽
流体学
工艺工程
工程类
核工程
计算机科学
电气工程
化学
电解质
有限元法
电极
物理化学
操作系统
结构工程
作者
Danji Huang,Binyu Xiong,Jiakun Fang,Kewei Hu,Zhiyao Zhong,Yuheng Ying,Xiaomeng Ai,Zhe Chen
出处
期刊:Applied Energy
[Elsevier BV]
日期:2022-03-30
卷期号:314: 118987-118987
被引量:30
标识
DOI:10.1016/j.apenergy.2022.118987
摘要
Electrolysis occupies a dominant position in the long-term application of hydrogen energy, as it can use the power surplus directly from renewable energies to produce hydrogen. Alkaline water electrolysis (AWE) is a mature and reliable technology standing out from other types of electrolysis because of its simplicity and low cost. Several multiphysics processes inside the AWE cell, such as the electrochemical, thermal, and fluidic processes. Developing the multiphysics model to quantify the relationship between these physics fields is essential for cell design. This paper establishes a three-dimensional numerical model to consider the quantitative relationship between the electrochemical process and fluidic process inside the cell of industrial AWE. The model considers the structural design of industrial AWE equipment, revealing that the shunting current effect introduced by the structure design cannot be ignored in the model. The simulation results present that the multiphysics model considering the bubble effect can estimate the current–voltage (I-V) characteristic curve more accurately with a relative error smaller than 5%, especially at a current density higher than 2500 A/m2. The model established is supposed to advance the development of water electrolysis models and guide the electrolyzer design of industrial AWE cell.
科研通智能强力驱动
Strongly Powered by AbleSci AI