Deep learning-based fast detection of apparent concrete crack in slab tracks with dilated convolution

厚板 稳健性(进化) 卷积(计算机科学) 耐久性 结构工程 计算机科学 试验装置 材料科学 人工智能 模式识别(心理学) 人工神经网络 工程类 数据库 生物化学 基因 化学
作者
Wenlong Ye,Shijie Deng,Juanjuan Ren,Xue-shan Xu,Kaiyao Zhang,Wei Du
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:329: 127157-127157 被引量:20
标识
DOI:10.1016/j.conbuildmat.2022.127157
摘要

Slab tracks exposed to complicated environmental factors over a long period can cause cracks in the concrete, and if these cracks gradually expand, the concrete’s durability and service life will be greatly impacted. How to quickly and effectively detect concrete cracks has become an urgent challenge during the maintenance and repair of high-speed railway slab tracks. In this study, a large number of images of concrete cracks were collected in a database, and STCNet Ⅰ, a fast detection network architecture using dilated convolution based on deep learning, was proposed to detect apparent concrete cracks in slab tracks. After that, the watershed algorithm was used to segment the detected cracks. The results show that: I) compared with traditional network models, the STCNet Ⅰ provides a faster calculation at lower space complexity. The number of parameters used in this network is reduced by 96.03% and 93.28%, respectively compared with that in the VGG 16 and ResNet 50, and the time complexity is lower, with the calculation time reduced by 49.94% and 73.28%, respectively; II) the average recognition accuracy on the training set and the validation set reached as high as 99.71% and 99.33%, respectively, proving the robustness of the model; III) the accuracy and F1 score in the test samples of concrete crack reached 99.54% and 99.54%, indicating the strong generalization ability of the model; and IV) the concrete crack area was accurately detected, and the crack contour was fully closed and continuous. The research results from this paper provide an improved detection method of slab tracks and promote the fine detection and maintenance of the apparent concrete of slab tracks.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
山月完成签到,获得积分10
3秒前
小布完成签到 ,获得积分0
5秒前
cnyyp发布了新的文献求助10
7秒前
QY_0411发布了新的文献求助10
7秒前
曹梦梦发布了新的文献求助10
9秒前
科研通AI2S应助科研通管家采纳,获得10
14秒前
斯文败类应助科研通管家采纳,获得10
14秒前
大模型应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
猪猪hero应助科研通管家采纳,获得10
14秒前
spark完成签到,获得积分10
14秒前
猪猪hero应助科研通管家采纳,获得10
14秒前
上官若男应助科研通管家采纳,获得10
14秒前
猪猪hero应助科研通管家采纳,获得10
14秒前
15秒前
yzq完成签到 ,获得积分10
16秒前
白桃发布了新的文献求助10
16秒前
阿航完成签到,获得积分10
17秒前
18秒前
FashionBoy应助京阿尼采纳,获得10
18秒前
18秒前
曹梦梦完成签到,获得积分20
21秒前
21秒前
55666发布了新的文献求助10
23秒前
sjfczyh发布了新的文献求助10
24秒前
26秒前
远道完成签到,获得积分10
28秒前
京阿尼发布了新的文献求助10
32秒前
林撞树完成签到,获得积分10
35秒前
sjfczyh完成签到,获得积分10
35秒前
科研通AI5应助先锋老刘001采纳,获得10
35秒前
36秒前
41秒前
bzg完成签到,获得积分20
41秒前
科研龙发布了新的文献求助10
42秒前
44秒前
领导范儿应助闪闪的炳采纳,获得10
45秒前
科研通AI2S应助molly雨轩采纳,获得10
45秒前
岩崖发布了新的文献求助10
47秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846856
求助须知:如何正确求助?哪些是违规求助? 3389344
关于积分的说明 10556933
捐赠科研通 3109741
什么是DOI,文献DOI怎么找? 1713870
邀请新用户注册赠送积分活动 825023
科研通“疑难数据库(出版商)”最低求助积分说明 775164