旋光法
穆勒微积分
计算机科学
人工智能
背景(考古学)
支持向量机
人工神经网络
计算机视觉
集合(抽象数据类型)
模式识别(心理学)
遥感
基质(化学分析)
机器学习
光学
散射
地质学
物理
古生物学
复合材料
材料科学
程序设计语言
作者
Irene Estévez,F.J. Oliveira,Pedro Braga-Fernandes,Miguel Oliveira,L. Rebouta,M. I. Vasilevskiy
出处
期刊:Optics Express
[Optica Publishing Group]
日期:2022-02-23
卷期号:30 (16): 28385-28385
被引量:13
摘要
Detecting and recognizing different kinds of urban objects is an important problem, in particular, in autonomous driving. In this context, we studied the potential of Mueller matrix polarimetry for classifying a set of relevant real-world objects: vehicles, pedestrians, traffic signs, pavements, vegetation and tree trunks. We created a database with their experimental Mueller matrices measured at 1550 nm and trained two machine learning classifiers, support vector machine and artificial neural network, to classify new samples. The overall accuracy of over 95% achieved with this approach, with either models, reveals the potential of polarimetry, specially combined with other remote sensing techniques, to enhance object recognition.
科研通智能强力驱动
Strongly Powered by AbleSci AI